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Contributions

We introduce a new training algorithm for the
SLS binary classifier. A combination of evolu-
tive algorithms and Gradient Descent method is
used to improve its accuracy. In addition, we
estimate the number of straight line segments by
applying the clustering algorithm X-Means.
Our approach showed improvements in the accu-
racy compared to the original algorithm when
applied to synthetic and real datasets. Also, our
results are comparable with the SVM ones.

Selecting the Number of SLSs

SLSs 1 2 3 4
1 1-1 1-2 1-3 1-4
2 2-1 2-2 2-3 2-4
3 3-1 3-2 3-3 3-4
4 4-1 4-2 4-3 4-4

X-Means K-Means

nSLS  = 40 nSLS  = 21

nSLS  = 20 nSLS  = 21
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Hybrid Optimization Methods

Evolutive algorithms can assist the Gradient De-
scent method by providing a new set of initial
positions for L0 and L1, avoiding a local mini-
ma.

Methods:
1. Gradient Descent - GD
2. Genetic Algorithms - GA
3. Genetic Algorithms and Grad. Desc. - GA+GD
4. Dialectical Opt. and Grad. Desc. - DOM+GD
5. K-Beam Search and Grad. Desc. - KBM+GD

Setup:
1.Chromosome/Poles/States: Initial solutions,
consisting of the concatenated extremities from L0

and L1 (i.e. [L0|L1]).
2.Fitness Function/Social Force/Cost Function:
Represented by the MSE function:

E(FL0,L1) =
1
n

∑n

i=1
[FL0,L1(xi)− yi]

2,
which is the classification function from the SLS
classifier.

Algorithm:
Require: iterations, initialSolutionSize, minimumError
Ensure: minV alue; optimized value.
1: w[0:initialSolutionSize] ← generateInitialSolutions()
2: while (it < iterations) do
3: if (minV alue > minimumError) then
4: w ← applyGradientDescent(w)
5: minV alue ← evolutiveAlgorithmFunctions(w)
6: end if
7: end while
8: return minV alue
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Results: Public Distributions

Data Sets SLSs - Number
X-Means K-Means

australian 9-1 8-8
breast-cancer 3-1 4-4

diabetes 3-5 1-1
german 5-3 2-2
heart 3-2 10-10

ionosphere 2-8 10-10
liver-disorders 4-2 3-3

sonar 2-2 4-4

Proposal - Accuracy (%) Best % - Original

Public Data Sets gd ag+gd ag mdo+gd kbm+gd Class. SLS SVM

australian 76.9 (0.6) 75,0(2,7e-04) 75,0 (2,7e-04) 75,0 (1,9e-04) 75,4 (0,6) 87.0 (1.8) 87.4 (1.6)

breast-cancer 76.9 (2.4) 75.2 (0.4) 75.0 (0.0) 75.0 (0.0) 75.0 (0.0) 98.1 (0.7) 97.9 (0.9)

diabetes 75.9 (0.2) 81.2 (0.9) 75.1 (0.03) 81.5 (1.1) 81.4 (0.7) 76.4 (1.8) 77.8 (1.8)

german 76.5 (0.5) 80.5 (0.8) 75.2 (0.03) 80.7 (1.1) 80.9 (0.7) 76.7 (2.2) 77.3 (0.5)

heart 75.5 (0.5) 77.0 (1.1) 75.0 (0.01) 77.9 (1.7) 77.1 (0.9) 82.2 (3.3) 85.1 (3.3)

ionosphere 81.0 (3.5) 94.7 (1.1) 74.5 (3.7) 95.1 (1.1) 93.1 (1.8) 95.2 (2.6) 96.0 (2.1)

liver-disorders 75.8 (0.5) 78.9 (1.9) 75.5 (0.3) 77.3 (1.8) 76.3 (1.2) 70.1 (2.8) 72.7 (2.7)

sonar 80.9 (1.8) 88.9 (0.8) 75.3 (0.09) 87.6 (2.8) 87.8 (1.4) 86.3 (4.1) 88.4 (4.2)

Conclusions

The application of evolutive optimization algorithms combined with the gradient descent method allows
the accuracy improvement of the SLS classifier. We also suggest the X-Means algorithm to estimate
the number of SLSs.


