
Evolutive Algorithms Applied To The Straight Line
Segment Classifier

Rosario Medina Rodrı́guez
Institute of Mathematics and Statistics

University of São Paulo
São Paulo, Brazil

rmedinar@vision.ime.usp.br

Ronaldo Fumio Hashimoto
Institute of Mathematics and Statistics

University of São Paulo
São Paulo, Brazil

ronaldo@ime.usp.br

Abstract—During the past years, the use of machine learning
techniques has become one of the most frequently performed
tasks, due to the large amount of pattern recognition applications.
Thus, a great number of techniques dealing with this kind of
problem have been developed until now. In this work, we propose
an alternative training algorithm to improve the accuracy of the
SLS binary Classifier, which produces good results that can be
compared to Support Vector Machines. That classifier uses the
Gradient Descent method to optimize the final positions of two
sets of straight line segments that represent each class. Although,
this method quickly converges to a local optimum, it does not
guarantee a global minimum. Given that problem, we combine
evolutive optimization algorithms with the gradient descent
method to improve the classifier accuracy. In addition, we also
propose two experiments: (i) explore the use of different number
of straight line segments to represent the data distribution and
(ii) estimate the optimal number of segments to represent each
class using the X-Means algorithm. The proposed methodology
showed good results which can be used to solve some other
real problems using the SLS classifier with the proposed hybrid
training algorithm.

Keywords-straight line segments; supervised machine learning;
evolutive algorithms; optimization algorithms; pattern recogni-
tion

I. INTRODUCTION

Supervised Classification is one of the most frequently
performed and studied tasks due to its multiple applications
such as: voice recognition, character recognition, data mining,
among others [1], [2]. The most commonly known methods
are Linear Classifiers, Neural Networks and Support Vector
Machines [3]. The last one, represents the state of the art for
machine learning methods due to they strong mathematical
background and good performance on practical cases [4].

A new technique for Pattern Recognition (focused on super-
vised binary classification), called as Straight Line Segment
(SLS) classifier [5], [6], [7] was published. The key issue in
this technique is to find optimal positions of the straight line
segments given a training data set. An algorithm for finding
these optimal positions is called training algorithm.

(*) This manuscript is a summary of the Msc. dissertation “Algoritmos Evo-
lutivos aplicados ao Classificador baseado em Segmentos de Reta” defended
at July 03, 2012.

This classifier has not been explored yet, so we decided to
study new forms of improving the classification accuracy to
compared it results with the most commonly used classifiers.

Research objective and Contributions: The main research
objective of our work was the development of a new training
algorithm for the SLS classifier. The proposed method is based
on a combination of evolutive algorithms with the gradient
descent method in order to improve the accuracy of the
mentioned classifier.

The contributions were the following:
• Study and implementation of different hybrid optimiza-

tion algorithms to train the SLS classifier;
• Explore and evaluate the use different number of straight

line segments to represent each class;
• Propose the use of a clustering algorithm (X-Means) to

estimate the number of straight line segments;
• Verify the viability of our proposal by applying the

classifier in custom and public datasets. In addition,
a comparison with original SLS classifier and Support
Vector Machines results were done, too.

It is worth noting that, this modified classifier present results
that can be compared with SVM and also improved in most of
the cases the accuracy of the original Straight Line Segment
Classifier.

Following this introduction, Section II provides a briefly
description of the original SLS Classifier. Section III, presents
one of our proposals which describes new forms to estimate
the number of straight line segments to be used in each class.
A recall of evolutive optimization algorithms can be found in
Section IV and our last proposal of combining these algorithms
with gradient descent method in Section V. Section VI shows
results from the different experiments. Finally, we give some
conclusions and directions for future work in Section VII.

II. STRAIGHT LINE SEGMENT CLASSIFIER

A recent publication on Pattern Recognition presents a new
technique based on straight line segments [5], [6], [7]. Its main
contribution is to introduce a new type of classifier based on
distances between a set of points and two sets of straight
line segments. So far, this technique is focused on binary
classification, so there is only two possible classes in the data

mailto:rmedinar@vision.ime.usp.br
mailto:ronaldo@ime.usp.br

set. For the sake of completeness, we briefly describe in this
section the SLS classifier.

A. Basic Definitions for SLS Classifiers

Let p and q ∈ Rd+1. The straight line segment (SLS) with
extremities p and q is defined as:

Lp,q = {x ∈ Rd+1 : x = p+ λ · (q − p), 0 ≤ λ ≤ 1} (1)

Given a point x ∈ Rd, let xe = (x, 0) denote the extension of
x to Rd+1.

Given a point x ∈ Rd and Lp,q ⊆ Rd+1. The pseudo-
distance between x and L is given by:

distP (x, L) =
dist(xe, p) + dist(xe, q)− dist(p, q)

2
(2)

where dist(a, b) denotes the Euclidean distance between two
points a, b ∈ Rd+1.

Let L denote a set of SLSs, defined as:

L = {Lpi,qi : pi, qi ∈ Rd+1, i = 1, ...,m} (3)

where m represents the number of SLSs for each class.
Given a point x ∈ Rd, the discriminative function is defined

as:

TL0,L1
(x) =

∑
L∈L1

1

distP (x, L) + ε
−
∑
L∈L0

1

distP (x, L) + ε

(4)
where ε is a small positive constant to avoid division by zero.

Considering the discriminative function, the classification
function is defined as:

FL0,L1(x)

{
0, if SL0,L1

(x) < 0.5;
1, otherwise (5)

where SL0,L1
(x) is a sigmoid function denoted by:

SL0,L1
(x) =

1

1 + e−g(TL0,L1
(x))

(6)

The following relationships can be found among the dis-
criminative, sigmoid and classification functions:
• If x has approximately the same “distance” from

both L0 and L1 (that is, ∀L ∈ L0,∃L′ ∈ L1 :
distP (x, L) ≈ distP (x, L′) and vice-versa) then,
by Eq. 4, TL0,L1(x) ≈ 0 and consequently, by Eq. 6,
SL0,L1

(x) ≈ 0.5. So, the more x is equally separated
from L0 and L1, the more it is difficult to discriminate
whether x belongs to class 0 or 1.

• The closer x is to L1 (that is, ∃L ∈ L1 : distP (x, L) ≈
0) and, at the same time, x is farther from L0 (that is,
∀L ∈ L0 : distP (x, L) ≈ +∞) then, by Eq. 4, the bigger
is TL0,L1

(x) (that is, it tends to +∞) and, consequently,
by Eq. 6, the closer SL0,L1

(x) is to 1, and, therefore,
by Eq. 5, the closer is more x can be discriminated as
belonging to class 1 (that is, the closer the classification
function FL0,L1(x) is to 1).

• Analogously, the closer x is to L0 and (at the same time)
farther from L1, the closer the classification function
FL0,L1

(x) is to 0.

B. Training Algorithm

Given a set of n examples En = {(xi, yi) ∈ Rd × {0, 1} :
i = 1, 2, .., n}, the main purpose of the training algorithm in
the context of SLS classifiers, is to find two sets of SLSs L0

and L1 in order to minimize the mean square error function
defined as:

E(FL0,L1
) =

1

n

n∑
i=1

[FL0,L1(xi)− yi]2 (7)

This algorithm can be divided into two phases [6]:

1) Placing: This phase consists of pre-allocating (finding
initial positions of) the SLSs (in L0 and L1) based on
the fact that points x closer to L0 (or L1, respectively)
and farther from L1 (or L0, respectively) lead the clas-
sification function FL0,L1

(x) to 0 (or 1, respectively).
To achieve this goal, the set of examples En is split into
two groups, Xi = {x ∈ Rd : (x, y) ∈ En and y = i}
(for i = 0, 1), and then the clustering algorithm k-means
is applied to each group. Later, with the objective to
obtain the initial extremities of the SLSs for each cluster,
the k-means algorithm (with k = 2) is applied again, but
at this time to each cluster obtained from the previous
k-means application.

2) Tuning: The purpose of this phase is to minimize
the mean square error function. One possible way to
accomplish this task is to use the gradient descent
technique [8] to find the positions of the SLSs in L0

and L1 such that the mean square function derivate is
equal to zero. Despite of the gradient descent method
does not guarantee the global minimum and the final
solution (positions of the SLSs) depends on the initial
placing phase, this method was successfully applied
in [6].

III. SELECTING THE NUMBER OF STRAIGHT LINE
SEGMENTS

At SLS Classifier training phase (see II-B), the number
of straight line segments (SLSs) that represents each class,
besides being equal for L0 and L1, it is also an user predefined
parameter (nSLS) in the algorithm. Despite of the good
results obtained by the classifier in [7], where the number
of SLSs is the same for both classes and considering that this
number might have a great influence in the classification rate.
We decided to explore the performance of the classifier when
a different number of SLSs is used to represent each one of
the classes.

The main problems we found when selecting the number of
SLSs, were the following:

• We needed a graphical representation of the data distri-
bution to determine nSLS parameter;

• If the data distribution is unknown (most common case),
it would be necessary to train the classifier multiple times,
testing all the possible combination of SLSs until we find

F S SIMPLE X

Fig. 1. The four data distributions used in our tests (proposed in [6]).

an optimal one. This lead us to another problem: finding
the range of SLSs number to be tested;

• The original SLS classifier solution requires the nSLS
parameter to be provided by the user which may not lead
to a minimum classification error.

Given that problems, we also propose the application of a
clustering algorithm at Placing phase, in order to automatically
determine nSLS for each class. For this purpose, we used the
X-Means algorithm [9], which finds clusters in a dataset by
optimizing some information criteria like Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC) [10].

In the following subsections will be described our custom
test dataset and the two approaches we choose to reach an
optimal number of SLSs for each class.

A. Custom Test Data Sets

In these data sets, each region has a uniform probability
density function. This property makes possible to apply the
Bayes classifier [1] to obtain the ideal classification rate
and compare it with our result as it was proposed in [6].
Furthermore, since the probability density function is known,
it is possible to use numerical integration to calculate the
classification rate of the SLS classifier.

B. Exhaustive Search of SLSs Number

With this method, we try to find the best SLSs number
for each class in order to obtain the best classification rate.
As its name explains itself, every possible combination of
numbers in the range of 1 to 4, is tested. So, the classifier
was trained nSLS2 times, which means 16 for this case, to
achieve our objective. Some results can be seen in Figure 2,
using the “F-Distribution” with 1600 examples. For each train,
we show the final positions of the SLSs and its classification
rate. The highlighted figures into squares represent the best
training percentages: two using the same number of SLSs per
class and the other two using a different number.

C. Applying X-Means on Data Distributions

To avoid multiple trainings with Exhaustive Search or
guessing the optimal pair of numbers for the SLSs, we propose
using the X-Means clustering algorithm. The main advantage
of this algorithm [10], [11] is that we do not need to provide
the value of K as in K-Means algorithm. So, it can estimates
the number of clusters within the data distribution which will
represent the nSLS parameter for each class.

The X-Means algorithm starts with a small number of
clusters. Then by making locally decisions for every centroid

1 2 3 4

1

76.86% 78.92% 75.00% 79.77%

2

85.21% 87.17% 86.99% 85.96%

3

82.98% 85.10% 85.42% 85.73%

4

85.23% 79.63% 86.55% 84.36%

Fig. 2. Exhaustive Search: Final SLSs positions after training phase for
“F-Distribution”. Bayes classification rate: 87.66%

it decides to divide one centroid into two new centroids or
not. The criterion to decide this division is the Bayesian
Information Criterion (BIC) [12]. However, it can also be used
the Anderson-Darling Criterion (AD) [13], because it presents
a good performance with not spherical distributions. As we can
not assume the data distributions we will deal with, would be
spherical. We choose Anderson-Darling criterion to decide the
centroids division.

So, we propose a new Placing algorithm for SLS classifier,
by using the X-Means algorithm before the K-Means applica-
tion to find the extremities of the SLSs. The approach we used
to discover if it could find an optimal pair of SLSs number,
is described as follows:

• Divide the training data set into two groups, Xi = {x ∈
Rd : (x, y) ∈ En and y = i} (for i = 0, 1);

• Then X-Means is applied on each group to obtain nSLS0

clusters for class 0 and nSLS1 clusters for class 1;
• Finally, to get the extremities of the SLSs the K-Means

algorithm with K = 2, is applied on each cluster obtained
from the previous step, as it was proposed in the original
placing algorithm.

An example of the results obtained is shown in Figure 3.
On the right side, there is a points “F-Distribution” with 1600
examples. The X-Means algorithm found 4 clusters for class
0 and 2 for class 1. The SLSs final positions obtained a
classification rate of 87.03% for 3200 examples and 83.22%
for 1600 examples. It is worth noting that the positions
obtained in Figure 2 differ from these ones, due to the centroid
positions founded by the clustering algorithms. In addition,

the classification rate is also better than the obtained with
Exhaustive Search (86.55% and 79.63%). As a conclusion of
these experiments, we can say that the use of X-Means at
Placing phase would help on the improvement of the accuracy
of the SLS classifier.

F-DISTRIBUTION (1600 EXAMPLES) 1600 EXAMPLES

CLASS 0 CLASS 1 3200 EXAMPLES

Fig. 3. Applying X-Means algorithm - On the right: “F-Distribution” and its
respective clusters for each class. On the left: the final positions for the SLSs
after training using 4 SLSs for class 0 and 2 or 3 for class 1, respectively.

IV. OPTIMIZATION ALGORITHMS

It is known that optimization is the process of making
something better. The optimization problem could be divided
in two classes: global and local. The first one, always find
the best solution in a space of all the possible candidate
solutions. Unlike global optimization, the local one, finds the
best solution within a set of neighboring candidate solutions.

Optimization Algorithms are commonly used at training
phases of supervised machine learning in order to minimize a
specific cost function. In addition, considering the Theorem 1,
proposed in [14], which explains that it is impossible to create
a universal optimization strategy [15]. Several optimization
algorithms inspired on different areas where developed.

Theorem 1. (“No Free Lunch” for Optimization Algorithms):
Any two algorithms are equivalent when their performance is
averaged across all possible problems [16].

A briefly description of the algorithms used in this work
at training phase of the SLS classifier, is presented in the
following subsections.

A. Genetic Algorithms

The genetic algorithm (GA) is an optimization and search
technique based on the principles of genetics and natural
selection. A GA allows a population composed of many indi-
viduals to evolve under specified selection rules to a state that
maximizes the “fitness” (minimizes the cost function) [17].

B. Dialectical Optimization Method

The Dialectical Optimization Method (DOM) it is an evolu-
tionary method based on the materialist dialectics for solving

search and optimization problems [18], [19]. In addition, it
is based on the dynamics of contradictions between their
integrating dialectical poles. Each pole is considered as a
possible solution to the problem. These poles are affected
by process that make the system tend to stability called as
pole struggle and revolutionary crises, where some poles can
be absorbed by others or new poles may came up. The cost
function to be minimized is called as social force.

C. K-Beam Search

Sometimes, there are several local minimum points in
the optimization problem, so the global optimization is not
guaranteed. To avoid that problem, the optimization algorithm
is executed with different start points, saving the best solution
of them. The K-Beam Search, which is also a search and
optimization algorithm, works in the same way. Instead of
saving only the best solution, it saves a set of K solutions
and iteratively creates a predefined number of successors for
each of them, evaluating its neighboring solutions [20], to find
a global solution.

V. HYBRID OPTIMIZATION METHODS

The main advantage of evolutive algorithms is their capabil-
ity of escaping from local optimum by multi-point stochastic
searching. On the other hand, the strength of gradient descent
method [8] is the ability of finding local optimum by pointing
the direction that maximizes the objective function.

Thus, based on these properties, the combination of gradi-
ent descent and evolutive optimization algorithms, described
on the Algorithm 1, could improve the solution “quality”
of optimization problem. Also, as it was proposed in [21],
the evolutive algorithms (DOM, in that case) can assist the
gradient descent method by providing a new set of initial
positions for the two sets of SLSs L0 and L1, helping the
gradient to escape from local minima.

Algorithm 1 : Hybrid Optimization Methods Algorithm
Require: iterations, initialSolutionSize,

minimumError: set of initial parameters
Ensure: minV alue: optimized value.

1: w[0 : initialSolutionSize]← generateInitialSolutions()
2: while (it < iterations) do
3: if (minV alue > minimumError) then
4: w ← applyGradientDescent(w)
5: minV alue← evolutiveAlgorithmFunctions(w)
6: end if
7: end while
8: return minV alue

It is important to emphasize that the initial set of solutions
includes the solution obtained from one single application of
gradient descent so that our hybrid approach can generate a
solution that is equal to or better than the one obtained by just
using the gradient descent method. In this sense, our approach
is conservative.

In order to apply the evolutive algorithms to the straight line
segments problem, adaptations were made to some concepts

of Genetic Algorithms / Dialectical Optimization Method / K-
Beam Search to resolve the find the best positions of the SLSs
in L0 and L1:

1) Chromosome/ Poles/ States: Representing each initial
solution, is a vector consisting of the concatenated
extremities of the SLSs belonging to L0 and L1 (i.e.
[L0|L1]).

2) Fitness Function/ Social Force/ Cost Function: Repre-
sented by the MSE function, defined in Equation 5,
which is the classification function from the SLS clas-
sifier.

As result, we present 5 choices for training the SLS classi-
fier: (1)Gradient Descent (GD), (2)Genetic Algorithms (GA);
and the hybrid methods: (3)Genetic Algorithms with Gradient
Descent (GA&GD, (4) Dialectical Optimization Method with
Gradient Descent (DOM&GD) and (5)K-Beam Search with
Gradient Descent (KBM&GD).

VI. OBTAINED RESULTS

In order to evaluate our proposal we performed three
experiments on the 4 custom test distributions described on
Subsection III-A, with 100, 200, 400, 800, 1600 and 3200
examples; 3 samples for each one, totalizing 18 samples for
each distribution. The experiments conducted were: (i) To
find the best hybrid optimization algorithm to train the SLS
classifier (GD, GA, GA&GD, MOD&GD, KBM&GD); (ii)
To find the best set of parameters, by conducting a sensitivity
analysis and (iii) To find the best way of estimating the SLSs
number for each class. Finally, we apply the best training
option on a set of public data sets 1.

All the experiments were performed in computers with
16 processors Intel 2.4 GHz and 5.8 GB of RAM under
Ubuntu/Linux operating system. In this work we only show 1
experiment for custom distributions and the results obtained
for public data sets.

A. Sensitivity Analysis

Here, we described the second experiment. The SLS classi-
fier was trained with each of the 5 hybrid training method with
the best SLSs number obtained from the exhaustive search for
“F-Distribution”: nSLS = 2 for each class, using 3 variations
of parameters described on Table I. One result from this
analysis is presented on Figure 4, we can say that the best
classifications rates were using Param 2 and 3, but for most
of the other distributions were not significant difference.

B. Public Data Set

The proposed hybrid methods were also applied to eight
public data sets extracted from the UCI Machine Learning
Repository [22]. The experiments were conducted by separat-
ing each sample randomly in two parts: 2/3 of the examples
for training and 1/3 for testing, using 10-Fold-Validation with
the 5 hybrid algorithms and the third set of parameters. To
estimate the number of SLS we use X-Means Algorithm.

1 All the results and experiments analysis are available on:
http://vision.ime.usp.br/∼rmedinar/Sibgrapi Experiment Results.

TABLE I
PARAMETERS SETS FOR EACH HYBRID OPTIMIZATION METHOD

PARAMETERS
GA PARAM. 1 PARAM. 2 PARAM. 3

POPULATION 200 500 1000
GENERATIONS 100 1000 500

GA&GD PARAM. 1 PARAM. 2 PARAM. 3
POPULATION 2 10 50

GENERATIONS 2 5 3

DOM&GD PARAM. 1 PARAM. 2 PARAM. 3
POLES 30 15 50

PHASES 20 10 15
ITERATIONS 15 15 15

KBM&GD PARAM. 1 PARAM. 2 PARAM. 3
STATES 2 5 10

SUCCESSORS 10 20 15
ITERATIONS 3 10 5

Fig. 4. Sensitivity Analysis for “F-Distribution” using Genetic Algorithm
training method and different sizes of data sets. The pointed line represent
the Bayes classification rate (87.6%).

The results can be observed on Table II. The higher per-
centages for our proposal, are highlighted in bold and the
best results from the original SLS classifier and SVM are
underlined. Finally, the highest classification rate from them
is highlighted into a square for each data set. These results
showed that for most of the cases our proposal is better than
the original SLS classifier and even sometimes better than the
Support Vector Machines. About the number of SLSs, in most
of the cases, it was increased improving the accuracy of the
classifier.

TABLE III
SLSS NUMBER AFTER APPLYING X-MEANS AND K-MEANS

DATA SETS SLSS - NUMBER

X-MEANS K-MEANS

AUSTRALIAN 9-1 8-8
BREAST-CANCER 3-1 4-4

DIABETES 3-5 1-1
GERMAN 5-3 2-2

HEART 3-2 10-10
IONOSPHERE 2-8 10-10

LIVER-DISORDERS 4-2 3-3
SONAR 2-2 4-4

VII. DISCUSSION AND CONCLUSIONS

In this paper we presented two approaches to estimate
the required number of straight line segments to be used

http://vision.ime.usp.br/~rmedinar/Sibgrapi_Experiment_Results

TABLE II
RESULTS OBTAINED USING THE 5 HYBRID TRAINING ALGORITHMS WITH THE BEST SET OF PARAMETERS.

HYBRID TRAINING ALGORITHMS - PROPOSALS BEST % - ORIGINAL

PUBLIC DATA SETS GD AG+GD AG MDO+GD KBM+GD CLASS. SLS SVM

AUSTRALIAN 76.9 (0.6) 75,0(2,7e-04) 75,0 (2,7e-04) 75,0 (1,9e-04) 75,4 (0,6) 87.0 (1.8) 87.4 (1.6)

BREAST-CANCER 76.9 (2.4) 75.2 (0.4) 75.0 (0.0) 75.0 (0.0) 75.0 (0.0) 98.1 (0.7) 97.9 (0.9)

DIABETES 75.9 (0.2) 81.2 (0.9) 75.1 (0.03) 81.5 (1.1) 81.4 (0.7) 76.4 (1.8) 77.8 (1.8)

GERMAN 76.5 (0.5) 80.5 (0.8) 75.2 (0.03) 80.7 (1.1) 80.9 (0.7) 76.7 (2.2) 77.3 (0.5)

HEART 75.5 (0.5) 77.0 (1.1) 75.0 (0.01) 77.9 (1.7) 77.1 (0.9) 82.2 (3.3) 85.1 (3.3)

IONOSPHERE 81.0 (3.5) 94.7 (1.1) 74.5 (3.7) 95.1 (1.1) 93.1 (1.8) 95.2 (2.6) 96.0 (2.1)

LIVER-DISORDERS 75.8 (0.5) 78.9 (1.9) 75.5 (0.3) 77.3 (1.8) 76.3 (1.2) 70.1 (2.8) 72.7 (2.7)

SONAR 80.9 (1.8) 88.9 (0.8) 75.3 (0.09) 87.6 (2.8) 87.8 (1.4) 86.3 (4.1) 88.4 (4.2)

for representing each class. An exhaustive search which as
expected take a lot of time and resources and the application of
a clustering algorithm X-Means. From the results, we suggest
the alternative of using the X-Means algorithm in future,
works due to the improvement of the accuracy and better
representation of the data distribution. Although, it has been
showed that X-Means can also fail when finding the clusters.

The application of different evolutive optimization algo-
rithms combined with the gradient descent method allows
the accuracy improvement of the SLS classifier. This can
be confirmed with the results obtained with the public data
set. While these hybrid algorithms improves the classification
rate, the computation time for the training algorithm increases
because of the multiple iterations of the evolutive algorithms
and gradient descent method. In addition it has been studied
the use of threads on the implementation to reduce the training
time. From the results, a good alternative for training the SLS
classifier could be the combination of Dialectical Optimization
Method and Gradient Descent, because it present good clas-
sification rates. Also, in contrast with the other optimization
methods, it reduces the space of solutions in each iteration.

The sensitivity analysis of the evolutive algorithms on the
custom data sets did not showed significative differences in the
classification rates. It is our intention as future work, to rebuild
this experiment with another distribution in order to confirm
our results. We also plan to extend this work by finding the best
type of data distributions or problems where the SLS classifier
beat the Support Vector Machines with a bigger margin of
classification rate and to develop an extended version of the
classifier to be used on multi-class data distributions.

ACKNOWLEDGMENT

Financial support for this research has been provided by
FAPESP and CNPq.

REFERENCES

[1] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
John Wiley and Sons, 2001.

[2] C. Bishop, Pattern Recognition and Machine Learning. Springer New
York, 2006, vol. 4.

[3] S. Kotsiantis, “Supervised machine learning: A review of classification
techniques,” in Proceeding of the 2007 conference on Emerging Artifi-
cial Intelligence Applications in Computer Engineering: Real Word AI
Systems with Applications in eHealth, HCI, Information Retrieval and
Pervasive Technologies. IOS Press, 2007, pp. 3–24.

[4] S. Abe, Support Vector Machines for Pattern Classification (Advances
in Pattern Recognition), 2nd ed. Springer-Verlag New York, Inc., 2010.

[5] J. Ribeiro and R. Hashimoto, “A new machine learning technique based
on straight line segments,” in ICMLA 2006: 5th International Conference
on Machine Learning and Applications, Proceedings. IEEE Computer
Society, 2006, pp. 10–16.

[6] ——, “A new training algorithm for pattern recognition technique based
on straight line segments,” in Proceedings of the 2008 XXI Brazilian
Symposium on Computer Graphics and Image Processing. IEEE
Computer Society, 2008, pp. 19–26.

[7] ——, Pattern Recognition, Recent Advances. I-Tech, 2010, ch. Pattern
Recognition Based on Straight Line Segments, book Chapter.

[8] D. Michie, D. Spiegelhater, and C. Taylor, “Introduction to optimization
theory,” 1973.

[9] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” in Proceeding of the 17th
International Conference on Machine Learning. Morgan Kaufmann,
2000, pp. 727–734.

[10] A. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogni-
tion Letters, vol. 31, no. 8, pp. 651–666, 2010.

[11] R. Vatsavaia, C. Chandolaa, V. Junb, and G. Junb, “Gx-means: A model-
based divide and merge algorithm for geospatial image clustering,”
Procedia Computer Science, vol. 4, pp. 186–195, 2011.

[12] G. Schwarz, “Estimating the dimension of a model,” The annals of
statistics, vol. 6, no. 2, pp. 461–464, 1978.

[13] G. Hamerly and C. Elkan, “Learning the K in K-Means,” in Neural
Information Processing Systems. MIT Press, 2003.

[14] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–
82, 1997.

[15] Y. Ho and D. Peyne, “Simple explanation of the no free lunch theorem of
optimization,” in Proceedings of the 40th IEEE Conference on Decision
and Control, vol. 5. IEEE, 2001, pp. 4409–4414.

[16] D. Wolpert and W. Macready, “Coevolutionary free lunches,” Evolu-
tionary Computation, IEEE Transactions on, vol. 9, no. 6, pp. 721–735,
2005.

[17] R. Haupt and S. Haupt, Practical Genetic Algorithms. J. Wiley & Sons,
2004.

[18] W. D. Santos and F. D. Assis, “Optimization based on dialectics,”
in Proceedings of the 2009 International Joint Conference on Neural
Networks, ser. IJCNN’09. IEEE Press, 2009, pp. 1095–1102.

[19] W. D. Santos, F. D. Assis, R. D. Souza, P. Mendes, H. Monteiro,
and H. Alves, “Dialectical non-supervised image classification,” in
Proceedings of the Eleventh conference on Congress on Evolutionary
Computation, ser. CEC’09. IEEE Press, 2009, pp. 2480–2487.

[20] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice Hall, 2002.

[21] R. Medina and R. Hashimoto, “Combining dialectical optimization and
gradient descent methods for improving the accuracy of straight line
segment classifiers,” in Sibgrapi 2011. 24 Conference on Graphics,
Patterns and Images. IEEE, august 2011, pp. 321–328.

[22] A. Asuncion and D. Newman, “UCI machine learning repository,” http:
//archive.ics.uci.edu/ml/, 2007.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

	Introduction
	Straight Line Segment Classifier
	Basic Definitions for SLS Classifiers
	Training Algorithm

	Selecting the number of Straight Line Segments
	Custom Test Data Sets
	Exhaustive Search of SLSs Number
	Applying X-Means on Data Distributions

	Optimization Algorithms
	Genetic Algorithms
	Dialectical Optimization Method
	K-Beam Search

	Hybrid Optimization Methods
	Obtained Results
	Sensitivity Analysis
	Public Data Set

	Discussion and Conclusions
	References

