
Typestate-Oriented Design
A Coloured Petri Net Approach

Jorge Luis Guevara Dı́az
Department of Computer Science

Institute of Mathematics and Statistics
São Paulo University,São Paulo-Brazil

jorjasso@vision.ime.usp.br

Abstract
Typestate Oriented programming is a extension of the object ori-
ented paradigm, where objects are modeled in terms of changing
states. This paper propose the use of coloured petri nets as tech-
nique of design typestates for Typestate Oriented Programming.

Categories and Subject Descriptors D.3.2 [Programming lan-
guages]: Language Classifications—Object-oriented languages;
D.2.2 [Software Engineering]: Design Tools and Techniques—
Object-oriented design methods; D.2.2 [Software Engineering]:
Design Tools and Techniques—Petri nets

General Terms Design, Object Oriented Programming, Petri
Nets.

Keywords keyword1, keyword2

1. Introduction
Typestate-oriented programming [1] is a novel approach where
objects are modeled in terms of changing states, this approach
allows that each state may have its own representation and methods
which may transition the object into a new state.

Petri nets are a powerful modelling technique for systems, Petri
nets originate from the early work of Carl Adam Petri[8]. Coloured
Petri nets [7] are a extension to basic petri nets that make them
more useful for practical modelling.

The current design of the typestates[1] is made with simple
state machines (Petri nets are more sophisticated state machines).
This work propose the use of non-hierarchical petri nets to design
typestates for typestate oriented programming.

This paper is organized as follows: Section 2 briefly reviews
typestate, typestate for objects and typestate oriented program-
ming concepts. Section 3 describe two petri nets concepts such
place/transition nets and non hierarchical coloured petri nets, this
section gives an formal definition of Petri nets and non-hierarchical
coloured petri nets and gives an example to understand the con-
cepts. Section 4 show how use non-hierarchical coloured petri nets
to design typestates for typestate oriented programming, this sec-
tion shows three examples: iterator, graphical user interface and
Files.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MAC5714 ’10 June 20, Sao Paulo, Brazil.
Copyright c© 2010 ACM [to be supplied]. . . $10.00
Reprinted from MAC5714 ’10, [Unknown Proceedings], June 20, Sao Paulo, Brazil.,
pp. 1–6.

2. Typestate: A programming language concept
2.1 Typestates for Objects
Typestate [9] is a refinement of concept of type of the data object,
while type of the data object determines the set of operations ever
permitted on the object, typestate determine the subset of these
operations which is permitted in particular context and captures the
notion of an objects begin in appropriate or inappropriate state for
the application of a particular operation.

Each type has an associated set of typestates. An object of a
given type is at each point in a program in a single one of the
typestates associated with its type. In each typestate, it is legal to
apply some operations of the type, but not others.

The typestate transition is defined by a typestate precondition,
which may hold in order for the operation to be applicable, and one
or more typestate postcondition reflection the possible typestates
of the operand after the operation is applied.

Objects change state over time. providing the programmer with
logic for writing precondition, postcondition, and objects invari-
ants quickly run into decidability problems [4]. Typestates capture
aspects of the state of an object, when an objects state changes its
typestate may change as well.

2.2 Typestate Oriented Programming
Typestate Oriented Programming [1] is a new paradigm that ex-
tend object-oriented programming with typestates. Plaid [10] is a
new programming language designed to support Typestate oriented
Programming (Figure 1). In this approach a typestate is like a class
in that it has its own interface (a set of method signatures), repre-
sentation (fields), and behavior (method implementations).

Characteristics of Typestate Oriented Programming:

• The programs are made up of dynamically created objects,
• Each object has a typestate that is changeable.
• Each typestate has an interface, representation, and behavior.

As an example consider the Figure 1. A File can have different
states, for example closeFile or openFile. This approach is differ-
ent from object oriented programming in the sense that an object
has encapsulated all behavior. State of a file can change, for ex-
ample a closedFile can be open (state of the file is now openFile)
file, this natural behavior is sintactically represented in PLAID as
[ClosedF ile >> OpenFile].

3. Petri Nets
3.1 Place/Transition Nets
Petri Nets also called Place/Transition Nets (PT-nets), are used for
many different practical purposes, they have a graphical represen-

1

Figure 1. Example of Typestate Oriented Programming in PLAID.

tation and a well-defined semantics allowing formal analysis. They
are useful for modelling concurrent, distributed, asynchronous be-
havior in a system.

A net is a bipartite graph G(V,E) where:

• V = P ∪ T , P is the set of places represented with circles and
T is the set of transitions represented with vertical bars.

Definition A PT-net is a tuple PTN = {P, T,A,W,M0}
satisfying the requirements below:

• P is a finite set of places
• T is a finite set of transitions
• A ⊆ (P × T) ∪ (T × P) is a finite set of arcs
• W : A −→ {1, 2, 3...} is a weighting function
• M0 : P −→ {1, 2, 3...} is the initial marking
• (P ∩ T) = φ and (P ∪ T) = φ

A transition tjεT is enabled if there is a token in each piεP
that has and edge to the transition. An enabled transition may or
may not occur (Figure 2).

3.2 Non-hierarchical CP-net
A PT-net has no types and no modules, with Coloured Petri Nets
(CP-nets) it is possible to use data types and complex manipulation.
CP-nets are a extension of Petri Nets where each token has attached
a data value called the token colour, the token colours can be ma-
nipulated by the occurring transitions. With CP-nets it is possible to
make hierarchical descriptions (hierarchical CP-nets) for example
a large model can be obtained by combining a set of sub-models.
Hierarchical CPN-nets allow well-defined interfaces between sub-
models, well-defined semantics of the combined model and also
sub-models can be reused.

3.3 Definition of non-hierarchical CP-nets: [7]
Definition A non-hierarchical CP-net is a tuple
CPN = {Σ, P, T,A,N,C,G,E, I} satisfying the requirements
below:

Figure 2. Place/Transition Nets.

1. Σ is a finite set of non-empty types, called colour set.
2. P is a finite set of places.

3. T is a finite set of transitions .

4. A is a finite set of arcs such that:
P ∩ T = P ∩A = T ∩A = φ.

5. N is a node function. It is defined fromA into P ×T ∪T ×P .

6. C is a colour function. It is defined from P into Σ.

7. G is a guard function. It is defined from T into expressions
such that:
∀tεT : [Type(G(t)) = Boolean ∧ Type(V ar(G(t))) ⊆ Σ]

8. E is an arc expression function, It is defined from A into
expressions such that
∀aεA : [Type(E(a)) = C(p(a))Bag ∧ Type(V ar(E(a))) ⊆
Σ], where p(a) is the place of N(a)

9. I is the initialization function. It is defined from P into closed
expressions such that:
∀pεP : [Type(I(p)) = C(p)Bag]

As a example consider a CPN-net from Figure 3. The colour
sets determines the types. operations and functions that can be used
in the net inscriptions i.e., arc expressions, guards, initialization
expressions, etc. In the example:

• Σ = {U, I, P,E}.

The places, transitions and arcs are described by three sets P ,
T and A, In the example:

• P = {A,B,C,D,E,R, S, T}
• T = {T1, T2, T3, T4, T5},
• A = {(A, T1), (T1, B), (B, T2), (T2, C), (C, T3), (T3, D),

(D,T4), (T4, E), (E, T5), (T5, A), (T5, B), (R, T1), (S, T1),
(S, T2), (T, T3), (T, T4), (T3, R), (T5, S), (T5, T)}.

The node function maps each arc into a pair where the first
element is the source node and the second the destination node.
In the example:

• N((A,T1))=(source, dest).
• N((T1,B))=(dest, source).

2

Figure 3. CPN-net.

The colour function C maps each place p, to a colour set C(p).
In the example:

• if pε{A,B,C,D,E} then C(p) = P , otherwiese C(p) = E.

The guard functionGmaps each transition t to an expression of
type boolean (Type(G(t)) = Boolean) i.e, a predicate. Moreover,
all variable in G(t) must have types that belongs to Σ, (that is to
say Type(V ar(G(t))). In the example:

• G(t) = [x = q] if t = T1, otherwiese G(t) = true.

The arc expression function E maps each arc into an expres-
sion which must be of the type C(p(a))Bag . (where p(a) is the
place of N(a) and C(p(a))Bag is a bag). Moreover, all vari-
able in E(a) must have types that belongs to Σ, (that is to say
Type(V ar(E(a))). In the example:

• E(a) = 2 if aε{(R, T1), (S, T1), (T, T4)}.
• E(a) = 2′e if a = (T5, S).
• E(a) = case x of p⇒ 2′e|q ⇒ 1′e if aε{(S, T2), (T5, T)}
• E(a) = if x = q then 1′e else empty if a = (T3, R)

• E(a) = if x = p then 1′e else empty if a = (T, T3)

• E(a) = if x = q then 1′(q, i+ 1) else empty if a = (T5, A)

• E(a) = if x = p then 1′(p, i+ 1) else empty if a = (T5, B)

• E(a) = (x, i) otherwiese

The initialization function I maps each place p into a expres-
sion which must be of type C(p)Bag . In the example:

• I(p) = 3′(q, 0) if p = A

Figure 4. Ocurrence of enabled binding.

Figure 5. CPN-net.

3

Figure 6. CPN-net.

• I(p) = 2′(p, 0) if p = B

• I(p) = 1′e if p = R

• I(p) = 3′e if p = S

• I(p) = 2′e if p = T

• I(p) = φ otherwiese

A token element is a pair (p, c) where pεP and cεC(p). In
the example are three (q, 0) − tokens (of colour P) on A, two
(p, 0) − tokens (of colour P) on B, the places C, D and E have
no tokens, R has one e − token, S has three e − tokens, T has
two e− tokens (of colour E).

A marking is a distribution of tokens on the places. The initial
marking M0 (Figure 3) is obtained by evaluating the initial ex-
pressions (the underlined expressions next to the place). The mark-
ing of the each place is a bag. In the example:

• M0 = 3′(A, (q, 0)) + 2′(B, (p, 0)) + 1′(R, e) + 3′(S, e) +
2′(T, e):

For each binding (i.e b1 =< x = p, i = 0 >, for the transition
T2) we can check whether the transition is enabled in the current
marking. When a transition is enabled for a certain binding, this
transition may occur (Figure 4), and it then remove tokens from its
input places and add tokens to its output place In the example:

• if b1 =< x = p, i = 0 > then the binding element (T2, b1)
is enabled in the initial M0 and transform the marking M0 into
the marking M1 (Figura 5).

• if b1 =< x = q, i = 0 > then the binding element (T2, b1)
is enabled in the initial M0 and transform the marking M0 into
the marking M2.(Figura 6).

• if b2 =< x = q, i = 100 > then the binding element (T2, b2)
is not enabled in the initial M0

The markings M0 and M2 is directly reachable from M0 (see
the figure).

Its possible that two transitions in a CP-net can be concurrently
enabled. In the example:

• 1′T1, < x = q, i = 0 > +1′(T2, < x = p, i = 0 >)

3.4 Benefits and advantages of CP-nets
Some benefits [7]) of CP-nets are:

• Description and analysis become more compact and manage-
able , the complexity is divided between the net structure, the
declarations and the net inscriptions.

• Is possible describe data manipulations in a direct way using
the arc expressions.

• It becomes easier to see the similarities and diferences between
similar systems parts

• It is possible to create hierarchical descriptions

Some advantages [7]) of CP-nets are:

• Graphical representation
• Well-defined semantics
• Generality
• Few, but powerfull primitives
• Explicit description of states and actions
• Hierarchical descriptions
• Computer tools supporting their drawing, simulation and anal-

ysis.

4. Typestate-Oriented Design: Coloured Petri
Nets

This section, shows the use of CPN-nets as design tool for typestate
programming. The procedure for using CPN-nets is as follows:

• The places are the typestates.
• The transitions are the methods that makes typestate change.
• The colour set determine the types handled by the CPN-net.
• The guards specifies some conditions for change the typestates.
• The arcs determine the data values.
• The tokens carries the data value that belongs to the type asso-

ciated with the place.
• The initial marking is the starting point for the CPN-net opera-

tion.

The CPN-net approach (Figure 10, Figure 14, Figure 15) is
more concise than the state machine described (Figure 9, Figure
13).

I show the use of a CPN-net through a series of examples .(all
examples was taken from the article Typestate-oriented program-
ming [1]). Examples were modeled with CPNTOOLS [11] soft-
ware.

4.1 Example:Iterators
This example shows a iterator. The Iterator state has two states:
avail and end. Figure 7 shows the source code in Plaid. Figure 8
shows how a client may use an iterator in Plaid. Figure 9 shows a
iterator state machine. The figure 10 shows the CPN-net approach.

• Places. (Avail, End)
• Transitions. (next())

4

Figure 7. Iterators in Plaid.

Figure 8. Iterator client code in Plaid.

Figure 9. Iterator State Machine.

• Colour set. (Element)
• Guards. (n > 1, n = 1)
• Arcs. (empty, e)
• Tokens. (ne)
• Initial marking. (10′e)

4.2 Example:Graphical Interface
This example shows a graphical interface with two states: idle and
runing. Figure 11 shows the source code in Plaid. Figure 12 shows
how a client may use an iterator in Plaid. Figure 13 shows an
iterator state machine.

The figure 13 shows the CPN-net approach.

• Places. (Running, Idle)
• Transitions. (start() and stop())
• Colour set. (Element)
• Guards. (null)
• Arcs. (e)
• Tokens. (1e)
• Initial marking. (1′e)

Figure 10. Iterator with CPN-net.

Figure 11. Graphical interface code in Plaid.

Figure 12. Graphical interface client code in Plaid.

Figure 13. Graphical interface state machine.

5

Figure 14. Graphical interface with CPN-net.

Figure 15. Files with CPN-net.

4.3 Example:Files
This example shows a File with two states: OpenFile and Closed-
File. Figure 1 shows the source code in Plaid.

The figure 15 shows the CPN-net approach.

• Places. (OpenFile, ClosedFile)
• Transitions. (read(), open() and closed())
• Colour set. (File, Data, INF)
• Guards. (ptrF ile <> null, data <> vacio)
• Arcs. (1ptrF ile)
• Tokens. (1ptrF ile, 1′(ptrF ile, data))
• Initial marking. (1ptrF ile+ 1′(ptrF ile, data))

5. Conclusions
CPN-nets are a powerful modelling technique that have a graphical
representation which allows a concise modelling of typestates, also

CPN-nets have a well-defined semantics which unambiguously de-
fines the behavior of each CPN-net. CPN-nets are very general and
can be used to describe a range from informal systems to formal
systems. For this reason, CPN-nets are suitable for modelling type-
states. CPN-nets have a number of formal analysis methods (not
described in this paper) by which properties of CPN-nets can be
proved.

Typestate programming is a new programming paradigm that is
actually developed in Carnegie Mellon University. Plaid (currently
developing) is a language for Typestate programming. I show that
CPN-nets can be used in successfully manner for design typestates.

References
[1] Aldrich, J., Sunshine, J., Saini, D., and Sparks, Z. 2009. Typestate-

oriented programming. In Proceeding of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming Systems
Languages and Applications (Orlando, Florida, USA, October 25 -
29, 2009). OOPSLA ’09. ACM, New York, NY, 1015-1022. DOI=
http://doi.acm.org/10.1145/1639950.1640073

[2] Bierhoff, K. and Aldrich, J. 2005. Lightweight object specification with
typestates. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT international
Symposium on Foundations of Software Engineering (Lisbon, Portugal,
September 05 - 09, 2005). ESEC/FSE-13. ACM, New York, NY, 217-
226. DOI= http://doi.acm.org/10.1145/1081706.1081741

[3] Bierhoff, K. and Aldrich, J. 2007. Modular typestate checking of aliased
objects. In Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications (Montreal,
Quebec, Canada, October 21 - 25, 2007). OOPSLA ’07. ACM, New
York, NY, 301-320. DOI= http://doi.acm.org/10.1145/1297027.1297050

[4] Robert Deline and Manuel Fahndrich. Typestates for Objects. In Proc.
European Conference on Object-Oriented Programming, 2004.

[5] Janneck, J. W. and Esser, R. 2002. Higher-order petri net modelling:
techniques and applications. In Proceedings of the Conference on
Application and theory of Petri Nets: Formal Methods in Software
Engineering and Defence Systems - Volume 12 (Adelaide, Australia).
C. Lakos, R. Esser, L. M. Kristensen, and J. Billington, Eds. ACM
International Conference Proceeding Series, vol. 145. Australian
Computer Society, Darlinghurst, Australia, 17-25.

[6] Pankratius, V. and Stucky, W. 2005. A formal foundation for workflow
composition, workflow view definition, and workflow normalization
based on petri nets. In Proceedings of the 2nd Asia-Pacific Conference
on Conceptual Modelling - Volume 43 (Newcastle, New South Wales,
Australia). S. Hartmann and M. Stumptner, Eds. Conferences in
Research and Practice in Information Technology Series, vol. 107.
Australian Computer Society, Darlinghurst, Australia, 79-88.

[7] K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical
Computer Science, Springer-Verlag, 2nd corrected printing 1997. ISBN:
3-540-60943-1.

[8] C. A. Petri. Kommunikation mit Automaten. Schriften des IIM nr. 2,
Institut fur Instrumentelle Mathematik, Bonn, 1962.

[9] R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw. Eng.,
12(1), 1986.

[10] http://www.cs.cmu.edu/ aldrich/plaid/
[11] http://wiki.daimi.au.dk/cpntools-help/

6

