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Abstract

This work describes a new approach to classify genomic regions
by applying the multiscale fractal dimension [2] over images gen-
erated by chaos game representation (CGR) of sequences. Since
the introduction of chaos game representation of sequences [8],
evidences have been found that it is possible to obtain discrimi-
native measures from images produced by this methodology and
to feed such features into classifiers in order to identify the origin
of gene fragments. Also, it has been showed [3] that it is possible
to reconstruct filogenetic trees just using this representation.

In this project, we propose a new feature extractor of sequences
that can help the classification of genomic regions. The feature
extraction consists of determining the CGR of a sequence and
estimating the fractal dimension of the generated image. Such
measurements are organized into a feature vector.

For certain genomic regions, as the GC-content (mean percent-
age of guanine and cytosine) changes, the CGR also changes.
We are going to verify if CGR contains more meaningful infor-
mation than GC-content that can be easily and fastly exploited
for genomic regions classification. Our preliminary results based
on cluster techniques show that methods based on this approach
should be better than GC-content based ones. We compared, for
each approach, the ability to distinguish genic regions of the hu-
man chromossome 22. Currently, we are finishing the validation
of the tests and developing a way to classify genic regions.

CGR Images

The chaos game is an algorithm, generally controlled by a series
of random numbers, which allows one to produce images (attrac-
tors) of fractal structures. The use of DNA sequences, rather
than random numbers, has been proposed to control the chaos
game [8]. We call an image generated by the DNA sequence of
Chaos Game Representation (CGR) of the DNA sequence.

CGR consists of disposing a table of frequencies in one square
matrix using a recursive rule.

Given one window w of size s, we build the square matrix m
of size n× n, n = 2s. Each point of the matrix m represents the
frequency of one possible configuration of the window w.

In the case where s = 1, there are only 4 rows in the frequency
table, the alphabet itself. We dispose the following example table

A 10
T 9
C 4
G 13

in the following 2× 2 matrix:

C G
A T

=⇒ 4 13
10 9

In the case where s = 2, there are 16 rows in the frequency
table as shown in the following example:

AA 10
AT 9
AC 4
AG 13
TA 11
TT 15
TC 24
TG 17

CA 35
CT 44
CC 0
CG 1
GA 22
GT 7
GC 90
GG 19

C G
A T

CC GC CG GG
AC TC AG TG
CA GA CT GT
AA TA AT TT

⇓
0 1 90 19
35 44 22 7
4 13 24 17
10 9 11 15

We can use gray levels, instead of using numbers, for visual-
ization. In the following example, we have the CGR images for
s = 1 . . . 8 of the bacteria A. fulgidus. The dark intensity is di-
rect proportional to the frequency. The last three images are log
normalized.

In the next set of imagens we can see the CGR image log nor-
malized, s = 8 for some organisms.

Note that there are significative pattern differences between
each organism.

A. thaliana D. melanogaster P. falciparum S. cerevisiae

S. pombe R. norvegicus H. sapiens M. musculus

E. cuniculi T. acidophilum V. parahaemolyticus V. vulnificus

M. leprae T. maritima P. horikoshii A. pernix

Nostoc sp Synechocystis sp M. pneumoniae S. flexneri

M. kandleri M. tuberculosis M. genitalium X. fastidiosa

Deschavanne [3] showed that these patterns can be used to build
filogenetic trees. Is is also possible to reconstruct the CGR image
using just small pieces of the genome. This property can be used
to construct a classifier that can decide from which organism is a
given piece of DNA [9].

The image above shows the log normalized CGR image of the
chromossome 22 where s = 8. In the following set of images, we
show some CGR images of genes of the chromossome 22. For each
image, there are three square sub-images inside. The top one is
the CGR of the gene DNA sequence, the medium one is the CGR
of the introns sequences and the bottom one is the CGR of the
exons sequences.

Note that some genes look like each other and with the CGR
image of the chromossome 22 above. Also note that some gene
CGR images are very different from each other, specially the exon
region images.

ENSG00000099972 ENSG00000100207 ENSG00000100261 ENSG00000100305 ENSG00000100330

ENSG00000100346 ENSG00000100354 ENSG00000100393 ENSG00000128271 ENSG00000169184

We are trying to explore local variations of the CGR image
in the chromossome. Our main goal is to extract some useful
information from CGR images that can be explored locally. We
are trying to do this using fractal dimension techniques.

Fractal Dimension

To explain the concept of fractal dimension, it is necessary to
understand what we mean by dimension. Obviously, a line has
dimension 1, a plane dimension 2, and a cube dimension 3.

So why is a line one-dimensional and the plane two-dimensional?
Note that both of these objects are self-similar. We may break
a line segment into 4 self-similar intervals, each with the same
length, and each of which can be magnified by a factor of 4 to yield
the original segment. We can also break a line segment into 7 self-
similar pieces, each with magnification factor 7, or 20 self-similar
pieces with magnification factor 20. In general, we can break a
line segment into n self-similar pieces, each with magnification
factor n.

A square is different. We can decompose a square into 4 self-
similar sub-squares, and the magnification factor here is 2. Alter-
natively, we can break the square into 9 self-similar pieces with
magnification factor 3, or 25 self-similar pieces with magnification
factor 5. Clearly, the square may be broken into n2 self-similar
copies of itself, each of which must be magnified by a factor of n
to yield the original figure as shown in the figure bellow.

Finally, we can decompose a cube into n3 self-similar pieces, each

of which has magnification factor n.
Fractal dimension is a measure of how “complicated” a self-

similar figure is. In a rough sense, it measures “how many points”
lie in a given set. A plane is “larger” than a line, while other curves
sit somewhere in between these two sets. The fractal dimen-
sion provides a quantitative characterization of the complexity of
curves as induced by self-similarity.

On the other hand, all three of these sets have the same number
of points in the sense that each set is uncountable. Somehow,
though, fractal dimension captures the notion of “how large a set
is” quite nicely. Therefore, the fractal dimension provides a nice
indication of how much the curve extends itself through space. As
a consequence, more intricate curves will cover the surrounding
space more effectively, leading to higher fractal dimensions.

Now we see an alternative way to specify the dimension of a self-
similar object: the dimension is simply the exponent of the num-
ber of self-similar pieces with magnification factor n into which
the figure may be broken. So we can write

F = fractal dimension =
log(number of self-similar pieces)

log(magnification factor)

So, for a straight line, F = log(n)
log(n) = 1, for a plane, F = log(n2)

log(n) =

2 and for a cube, F = log(n3)
log(n) = 3.

For the classical Koch Triadic curve, which basic pattern is
bellow, the fractal dimension F = log(4)

log(3) ≈ 1.26.

A shape analysis framework for neuromorphometry 299

(a) (b)

0 50 100 150
0

10

20

30

40

50

60

70

80

Scale (Pixels)

B
e

n
d

in
g

 e
n

e
rg

y

(c)

0 50 100 150
0

10

20

30

40

50

60

70

80

B
e

n
d

in
g

 e
n

e
rg

y

Scale (Pixels)

(d)

Figure 9. The bending energy can be used to characterize, in an objective fashion, the complexity

of parametric contours of neuronal cells and structures, in the sense that the higher the bending

energy, the more complex the shape. Good results have been obtained when using the bending

energy for the purpose of classifying nerve cells [30].

1 1 1

Figure 10. The basic pattern used to generate the Koch triadic curve.

only a few orders of similarity are usually found for natural objects, such as the three or four

orders found in fern leaves. Indeed, the fractality of such objects, especially when represented

in digital images, is limited at both microscopic and macroscopic scales. First, for scales

smaller than the image resolution, the fractal dimension tends to zero, the dimension of the

image pixels. On the other hand, for scales larger than the object, the respective dimension

“Despite the good potential of this measure to characterize com-
plexity in a more objective fashion, its extension to real objects
is complicated by the fact that the latter are not perfectly self-
similar. In fact, only a few orders of similarity are usually found
for natural objects, such as the three or four orders found in fern
leaves. Indeed, the fractality of such objects, especially when
represented in digital images, is limited at both microscopic and
macroscopic scales. First, for scales smaller than the image reso-
lution, the fractal dimension tends to zero, the dimension of the
image pixels. On the other hand, for scales larger th an the ob-
ject, the respective dimension tends to zero, as the object tends to
behave as a point for large distances. Therefore, real objects will
present higher fractal values only along limited intervals of spa-
tial scale. This problem can be suitably addressed by using the
multiscale extension of the fractal dimension recently described
in [1], which involves the numerical estimation of the first deriva-
tive of a log log cumulative function, more specifically the graph
of the logarithm of the dilated area in terms of the logarithm of
the spatial scale (i.e. radius of the dilating discs).

This extension involves obtaining not a scalar value of frac-
tal dimension as usually done, but expressing a fractal function in
terms of the spatial scale that properly reflects the behavior of the
object when observed at different magnifications. Therefore, the
multiscale fractal dimension represents a less degenerate geomet-

ric characterization, in the sense of preserving more information
about the geometry of the original object.” [2]. We are using this
approach to extract information from DNA sequences.

More information on fractal dimension and chaos game can be
found in Devaney [4] and Costa [2].

The following image is an example of multiscale fractal dimen-
sion graph obtained from the CGR image of the human chromos-
some 22. The x-axis is the resolution (log of the radius of the ball
size in pixels) and the y-axis is the fractal dimension.
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Preliminary Results

We did a series of 25 clustering experiments to evaluate the
potential of the fractal dimension based approach to searching
genes. We compared 5 kinds of characteristics:

1. GC-content

2. CGR image of the sequence

3. CGR image log normalized of the sequence

4. Multiscale Fractal Dimension of CGR image

5. Multiscale Fractal Dimension of CGR image log normalized

We extracted the above characteristics from 526 genes of the
chromossome 22 (complete sequence) and 655 continuous regions
of the same chromossome where there is a big confidence that
there is no genes or genes pieces in them.

The basic idea was to try to separate these 1181 DNA sequences
just using one of the above characteristics each time. For each
characteristic we calculated a matrix of distances D using, re-
spectively, the following rules where x and y are the two points
being considered:

1. GC-Content - Sum of the module of the differences of x and y

2. CGR image - D =
∑
i,j

|xij − yij|

3. Multiscale Fractal Dimension - D =
∑

i

|xi − yi|

For each distance matrix D, we applied 5 hierarchical clustering
algorithms available in Matlab 6 trying to separate the whole set.

For each one of the 25 experiments we calculated 1180 clustering
of the same method with the number of clusters from 2 to n.

The “error rate” of each experiment is the minimum error pos-
sible that we do by labelling each cluster with either “genes” or
“not genes”. So, for each clustering, the total error will be the
sum, for each cluster, of the minimum number between genes and
not genes elements in the cluster.

We applied a simple bootstrap method that consists of selecting
randomly 350 regions of genes and 350 regions of not genes. We
build 100 data sets using this method and applied the clustering
procedure for each data set.

In the following set of graphs we can see the results for the
“Complete” clustering method. The x-axis represents the number
of clusters (in percentage of the total set size) and the y-axis the
error rate. Each graph represents a different characteristic.

For the first 5 graphs, in black we have the mean of false positive
rates (FP - labelling as gene regions that are not genes) with error
bars and in yellow the mean of false negative rates (FN - labelling
as not gene regions that are genes) with error bars. In the third
color we have the mean of hit rates (100 - mean(FP) - mean(FN)).
The last graph shows the mean of hit rates for each characteristic.

• Magenta - Multiscale Fractal Dimension graph of CGR image

• Cyan - Multiscale Fractal Dimension graph of CGR image log
normalized

• Red - CGR image

• Green - CGR image log normalized

• Blue - CG-Content
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It is important to observe that for the others clustering methods
the results are almost similar. In all experiments the cyan curve
(Multiscale Fractal Dimension graph of CGR image log normal-
ized) is better than the others curves. Note that it only make sense
to compare the curves in the first 20% part (the beginning of the
graph) because values higher than that characterizes overfitting.

Theses preliminary results are interesting because they don’t
use any additional biological information. In spite of the separa-
tion for all methods is not excellent, these results suggests that
measures based on fractal dimension of CGR images of sequences
should be used in gene searching systems. Note that this is a pre-
liminary result that must be validated through more experiments.
In the way they were done, these experiments are equivalent to
training a supervised classifier and applying the classifier in the
training set.

The following graph shows the mean hit rate for each charac-
teristic being considered, with error bars.
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Further Work in Progress

Currently we are doing a series of experiments to validate the
application of the multiscale fractal dimension technique. We
pretend to test the ability of classification of this measure using
randomly selected regions of the human chromossome 22 and to
extend these experiments to others chromossomes.

It is important to note that while the Multiscale Fractal Di-
mension graph of CGR image log normalized has produced nice
results, the Multiscale Fractal Dimension graph of CGR image
linearly normalized was the worst technique evaluated. This sug-
gests that normalization plays an important role in the process,
so we pretend to make experiments to find a nice normalization
that should be used.

The biggest problem blocking the realization of these experi-
ments was the algorithm to calculate the fractal dimension. It
was very slow. Now, we have just finished a new nice and very
faster algorithm so we plan to have final results in some weeks.

This approach needs the definition of a way to build a classifier
given a training set. We also pretend to study this problem.

We also may adapt this approach to other problems in Com-
putational Biology such as the determination of intron/exon and
exon/intron frontiers.
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