DEALING WITH CHALLENGING IMAGES USING NOISY STUDENT AND
FOCAL LOSS IN DETECTION OF TREES NEAR ELECTRIC WIRES.
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Motivation

 Electrical wires and tall vegetation may lead to problems like wildfires and

disruption of the energy distribution [2]. » The confidence of the model is characterized by the maximum probability in the predic- « Every challenging image has a low confidence (i.e. equal or below 55%)
tion vector given a sample. under FL,
A citizen can request to manage the vegetation but it should not depend on
her/him. « The following graphs show the number of images (in)correctly classified with a given « Furthermore, most of the incorrect cases also have a low confidence score.
confidence. Notice that the y-axis is log-scaled for better visualization. . . . .
- Automatically detecting trees close to wires enable a faster management of * An active learning system based on the confidence level can collect addi-
the trees and reduce the risk of hazardous problems. tional images for a given location and increase the overall accuracy.
- The urban scene is complex and can be hard to determine there is a need “”| S II = T e
for vegetation management or not. g I
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Fig. 4: Cross-entropy loss (CE) results for

the training partition.

Fig. 5: Focal loss results for the training partition.

Fig. 11: Image from Google Street Fig. 12: Image from Google Street Fig. 13: Image from Google Street

View. The confidence for this false  View. CE Misclassified as maybe View. FL misclassification as
negative dropped from 59% to 49% with intersection and corrected by  without intersection but with low
T e == sy i 27085 *] g e el == el . (208 with FL. FL as without intersection by FL. confidence (40%).
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contact with electrical wires. visibility due to sun glare. 3 S I ?» 51 B
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Fig. 6: Focal loss results for the validation partition. Fig. 7: Cross-entropy loss for the validation partition. * The method presented here has hlgh true posmve and negatlve rates,
 We collected 50k urban images at the street-level using Google Street View. * Despite the low overall accuracy, based on the low confidence, an active
learning system could be used to collect alternative images.
- 11k images were labeled and used for training, validation and test. = v ) = w0
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