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Motivation

• Electrical wires and tall vegetation may lead to problems like wildfires and
disruption of the energy distribution [2].

• A citizen can request to manage the vegetation but it should not depend on
her/him.

• Automatically detecting trees close to wires enable a faster management of
the trees and reduce the risk of hazardous problems.

• The urban scene is complex and can be hard to determine there is a need
for vegetation management or not.

Fig. 1: Image from Google Street View with trees in

contact with electrical wires.

Fig. 2: Image from Google Street View with bad

visibility due to sun glare.

Methodology

• We collected 50k urban images at the street-level using Google Street View.

• 11k images were labeled and used for training, validation and test.

• The other images were left unlabeled and used to train an EfficientNetB2
network with the Noisy Student training protocol [3] and Focal loss [1] (FL).

• We introduce an auxiliar label to characterize challenging images.

Fig. 3: The Noise Student protocol. Image from [3]

Results

• The confidence of the model is characterized by the maximum probability in the predic-
tion vector given a sample.

• The following graphs show the number of images (in)correctly classified with a given
confidence. Notice that the y-axis is log-scaled for better visualization.

Fig. 4: Cross-entropy loss (CE) results for

the training partition. Fig. 5: Focal loss results for the training partition.

Fig. 6: Focal loss results for the validation partition. Fig. 7: Cross-entropy loss for the validation partition.

Fig. 8: Cross-entropy loss results for the test partition. Fig. 9: Focal loss results for the test partition.

• Fig. 10 shows the confusion matrix
over the test dataset with Focal Loss:
(0) Trees w/ an Intersection, (1) Trees
maybe w/ Intersection, (2) Trees w/o In-
tersection and (3) No trees.

• True positive rate for class (0): 80.3%.

• True negative rate with respect to the
union of the classes (2) and (3) is
71.7%.

Fig. 10: Confusion matrix over the test dataset

Discussion

• Every challenging image has a low confidence (i.e. equal or below 55%)
under FL,

• Furthermore, most of the incorrect cases also have a low confidence score.

• An active learning system based on the confidence level can collect addi-
tional images for a given location and increase the overall accuracy.

Fig. 11: Image from Google Street

View. The confidence for this false

negative dropped from 59% to 49%

with FL.

Fig. 12: Image from Google Street

View. CE Misclassified as maybe

with intersection and corrected by

FL as without intersection by FL.

Fig. 13: Image from Google Street

View. FL misclassification as

without intersection but with low

confidence (40%).

Conclusion

• The method presented here has high true positive and negative rates,

• Despite the low overall accuracy, based on the low confidence, an active
learning system could be used to collect alternative images.
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