

Motivation

- Electrical wires and tall vegetation may lead to problems like wildfires and disruption of the energy distribution [2].
- A citizen can request to manage the vegetation but it should not depend on her/him.
- Automatically detecting trees close to wires enable a faster management of the trees and reduce the risk of hazardous problems.
- The urban scene is complex and can be hard to determine there is a need for vegetation management or not.

Fig. 1: Image from Google Street View with trees in contact with electrical wires.

Methodology

- We collected 50k urban images at the street-level using Google Street View.
- 11k images were labeled and used for training, validation and test.
- The other images were left unlabeled and used to train an EfficientNetB2 network with the Noisy Student training protocol [3] and Focal loss [1] (FL).
- We introduce an auxiliar label to characterize challenging images.

Fig. 3: The Noise Student protocol. Image from [3]

DEALING WITH CHALLENGING IMAGES USING NOISY STUDENT AND FOCAL LOSS IN DETECTION OF TREES NEAR ELECTRIC WIRES.

Artur Andre A. M. Oliveira^{1,2} and Roberto Hirata Jr.¹ and Zhangyang Wang²

arturao@ime.usp.br - hirata@ime.usp.br - atlaswang@utexas.edu

¹Institute of Mathematics and Statistics, University of São Paulo ²Visual Informatics Group, University of Texas at Austin

- union of the classes (2) and (3) is 71.7%.

Fig. 10: Confusion matrix over the test dataset

• Every challenging image has a low confidence (i.e. equal or below 55%) under FL,

- Furthermore, most of the incorrect cases also have a low confidence score.
- An active learning system based on the confidence level can collect additional images for a given location and increase the overall accuracy.

Discussion

Fig. 11: Image from Google Street Fig. 12: Image from Google Street Fig. 13: Image from Google Street View. The confidence for this false negative dropped from 59% to 49% with intersection and corrected by with FL.

View. CE Misclassified as maybe FL as without intersection by FL.

Conclusion

- The method presented here has high true positive and negative rates,
- Despite the low overall accuracy, based on the low confidence, an active learning system could be used to collect alternative images.

Acknowledgements

This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq 465446/2014-0, FAPESP 14/50937-1 and 15/24485-9. The authors acknowledge São Paulo Research Foundation (FAPESP) 18/10767-0 and 15/22308-2. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References

- [1] Tsung-Yi Lin et al. "Focal loss for dense object detection". In: *Proceedings of the IEEE* international conference on computer vision. 2017, pp. 2980–2988.
- [2] Jun Ma et al. "Real-time detection of wildfire risk caused by powerline vegetation faults using advanced machine learning techniques". In: Advanced Engineering Informatics 44 (2020), p. 101070.
- [3] Qizhe Xie et al. "Self-training with noisy student improves imagenet classification". In: *Pro*ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 10687–10698.

View. FL misclassification as without intersection but with low confidence (40%).