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Abstract Power and communication line corridors are usually mixed with
urban trees, and this mixing can be the source of multiple issues like fires and
communication failures. Nevertheless, urban trees are a valuable resource to
the city as they dissipate heat island effects, reduce air pollution and increase
general health perception. This work proposes a deep learning approach to
detect trees entangled to power and communication lines using street-level
imagery and perform quick quantitative and qualitative analyses based on
the Grad-CAM++ method. Testing the method was performed using 1001
images from urban trees from the cities of São Paulo and Porto Alegre (both
in Brazil). We found an overall accuracy of 74.6% (73.6% for São Paulo and
75.6% for Porto Alegre), suggesting that the methodology could be suitable
in the future for city management to avoid risks of accidents due to contact
between trees and electrical wiring. This text describes the method, a new
data set of urban images, the experimental setup design and tests, and some
possible future improvements.
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1 Introduction

Trees are essential to the life of our planet and also to the life of our cities.
Urbanization is increasing rapidly on the Earth (Bazaz et al., 2018), which co-
incides with temperature increases due to the climate change effects (de Con-
inck et al., 2018). Urban trees are among the critical elements of adaptation
of human populations to climate change due to the tree’s ability to decrease
the local temperature, interfere with flooding, and help with pollution (Buck-
eridge, 2015; Locosselli et al., 2019, 2020). Cities vary considerably regarding
the number of trees and their distribution (Lüttge and Buckeridge, 2020),
probably because of differences in planning concerning their green areas - the
quality of planning influences the quality of the environmental services pro-
vided by trees (Livesley et al., 2016; Escobedo et al., 2011).

The benefits of maintaining urban trees range from reducing air pollution
to preserving wildlife species, to name but a few. However, the occurrence
of trees near or on the sidewalks competes with electric power distribution.
Moreover, city structures can also interfere with environmental services due
to the competition for space between trees and the electrical wiring systems.
In such cases, drastic pruning changes urban trees canopy, decreases the shad-
owing capacity and spreads diseases. This situation requires action by the
public administration and has been generating reports that try to guide urban
management (e.g., Most and Weissman 2012; Purcell 2015).

Trees entangled with power lines can conduct energy to the ground, caus-
ing electrical shock accidents and energy leakages, which can heat the wood,
causing wildfires (Ma et al., 2020; Clarke and White, 2008), blackouts (Ahmad
et al., 2013) and partial discharges (Pakonen, 2008). Thus, power line moni-
toring is an essential matter when it comes to maintenance (Cheng and Song,
2008; Jwa et al., 2009; Lopes et al., 2015). Multiple criteria and indicators are
essential for the proper management and monitoring of urban forests (Kenney
et al., 2011; Ordóñez and Duinker, 2013). Monitoring the interaction between
power lines and trees may be used in conjunction with other criteria and in-
dicators (c.f. for more criteria and indicators for urban forest management
(Kenney et al., 2011)) in order to manage urban forests properly. Removing
trees because of entanglements is not an acceptable solution, and the improper
management of the urban vegetation is likely to be criticized by citizens (Fakes,
2000). From a manager’s perspective, human-centric monitoring is costly and
time-consuming, and it may also be dangerous when dealing with power poles
and lines (Jwa et al., 2009). Therefore, automatically finding entanglements
or future entanglements is a desirable solution to prune tree branches and
correctly avoid the problems mentioned above.

Regarding the interaction between vegetation and power lines, (Ma et al.,
2020) analyze the ignition properties of vegetation in contact with power lines
by applying and measuring (in a controlled environment) an electrical cur-
rent on branches of different species of trees over time. Over time, the mea-
sured electrical current patterns reveal stages in which branches heat up, expel
moisture, and finally flashover. (Ma et al., 2020) propose a machine learning
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approach to identify when there is a high risk of ignition based on the observa-
tion that the time-series of current on the power line can indicate a bushfire’s
initial stages.

(Kobayashi et al., 2009) exploit the availability of satellite images to detect
tall vegetation as trees close to power lines. The benefits of using satellite
images include broad geographical extents and the easy inspection of otherwise
difficult to access areas. By using multi-spectral images, they can spot healthy
vegetation, and by using stereoscopic techniques, they can compute the height
of the vegetation close to power lines and transmission towers, allowing one to
distinguish between harmless understory vegetation in the ground as bushes
and grass from tall trees that can come into contact with the power lines.
Based on airborne LiDAR data (Jwa et al., 2009), they propose a method to
detect and reconstruct (in 3D) power lines and transmission towers without
previous data about tower position or number of lines. Due to the proximity to
the ground in airborne imagery data and the structured laser from the LiDAR
sensor, one can expect a better resolution in those images when comparing
with satellite data, thus making it easier to spot issues arising from interference
from tall vegetation and power lines.

Some authors propose methods to map vegetation and other urban objects
along roads using ground Mobile Laser Scanner data (Yao and Fan, 2013) or
even airborne laser scanners and LiDAR data (Clode and Rottensteiner, 2005;
Jwa et al., 2009), providing both a high coverage area and accuracy. However,
this kind of data availability is relatively smaller than simple RGB (i.e., colored
images from regular cameras) street-level images provided by platforms such as
Google Street View (Anguelov et al., 2010), Mappilary Vistas (Neuhold et al.,
2017), and OpenStreetCam (®Grab and Contributors, 2019), for instance.
Street-level images allow the visualization of tree entanglements with power
lines from multiple points of view, leading to better results than aerial and
satellite images in urban areas, especially in places where trees can be taller
than pylons and cover wires above the above-ground images.

(Berland and Lange, 2017) study the applicability of the GSV as a tool
for auditing trees through a virtual tour. Field audits are labor-intensive and
costly, and by comparing results from the previous audits with those performed
through images from GSV, they concluded that the agreement between tree
counts is high for both audits. Identifying the genus and species for larger trees
(i.e., with a larger diameter at breast height) also has a high agreement level
between the audits, and finally that the time spent in the virtual audit was
less than half of that of the field audit.

Tree detection and classification using images is a well-studied topic in
computer vision, and multiple approaches exist nowadays. (Cheng and Song,
2008) and (Lopes et al., 2015) propose methods for detecting power poles in
images. The former presents a graph-cut algorithm combined with a region
proposal method to detect and extract image patches containing the power
poles. The latter uses GSV images and a strategy using color, texture, and
shape features as input to a multi-layer perceptron neural network. Motivated
by the abundance of public geolocalized images, (Wegner et al., 2016) propose
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a Convolutional Neural Network (CNN) (Goodfellow et al., 2016) architec-
ture to detect and classify urban objects using aerial and street-level imagery
from GSV. One of their conclusions is that using both image modalities will
complement each other, and removing any one of the modalities decreases the
mean average precision of the final classifier proposed.

Using GSV street-level images and a CNN architecture (Cai et al., 2018) pro-
pose a method to classify pixels and estimate the amount of greenery per-
ceived by pedestrians (called Green View Index). They perform a comparison
of three methods: a semantic segmentation unsupervised algorithm, a seman-
tic segmentation CNN and a regression CNN, and show that the regression
CNN outperforms the other methods. Because the results do not have a nat-
ural interpretation, they explore the gradient-weighted Class Activation Map
(Grad-CAM++) (Chattopadhyay et al., 2017) visualization method to assess
the main input image features (e.g., trees canopies and trunks) responsible for
the Green View Index estimation qualitatively.

To the best of our knowledge, none of the works previously performed in
the literature deals with the specific problem of detecting the entanglement
between overhead power lines and tall vegetation in street-level imagery. This
work proposes collecting geographical position data of trees and electricity
poles, then images from these positions are collected. These images are labeled
using an in-house application to alleviate the annotation process burden and
use part of the images to adapt a pre-trained Convolutional Neural Network
named MobileNetV2 (Sandler et al., 2018) to detect tree entanglements with
power lines near poles in street-level RGB images. Using the tuned network,
we achieve over 74% of test accuracy on a test set of 1001 images from two
Brazilian cities. The main contributions of this paper are:

1. An approach to detect tree and wire entanglements in street-level imagery
based on deep learning;

2. An annotated dataset of tree entanglements with power lines;
3. An open-source software for annotating street-level images.

2 Methodology

This section presents our solution to locate tree entanglements with power
lines. We first present a dataset of more than six thousand images collected
from São Paulo and Porto Alegre, two cities in the Southeast and South of
Brazil, respectively, using Google Street View. We then present the strategy
to annotate the images, and we finish the section presenting the strategy to
tune a Convolutional Neural Network using transfer learning.

2.1 Image dataset

We start collecting geographical position data of 2981 trees from an open gov-
ernment public database called GeoSampa (Prefeitura de São Paulo, 2021),
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with data for the São Paulo city, and 3111 positions of power poles at Porto
Alegre from the energy company CEEE’s website (CEEE, 2016). Using these
geographical positions, we applied INACITY to collect street-level images
from these positions and create the training and testing datasets. INAC-
ITY (Oliveira and Hirata Jr., 2021) is a platform (available at http://inacity.
org/) to collect and process image data for user-selected geographical regions
or positions. The default image provider used in INACITY is Google Street
View (GSV). The GSV platform uses an abstraction called panorama to encap-
sulate a set of stitched images obtained simultaneously with multiple cameras
at the same spot but pointing in different directions. The stitched composition
of the images creates a spherical ”panorama.”

To collect an image using INACITY, we first sample the nearest GSV
panorama from the location L of some target object (i.e., trees from GeoSampa
or power poles from CEEE’s dataset). After finding the nearest panorama from
L, we extract an image from the panorama such that the target object is at its
(horizontal) center. Figure 1 shows four examples of images from São Paulo
city and four examples of images from Porto Alegre city. Notice that sometimes
the target objects may not be visible due to occlusion, or they may not be
there when the picture was taken.

2.2 Dataset labelling

The labeling problem can be seen as multiclass, and the strategy to label each
image is to use a vector of three binary values, one to represent whether the im-
age has a tree or not, one to represent whether the image has power lines or not,
and one to represent whether the image has an entanglement between the tree
and the power lines. For example, if an image contains a tree, overhead power
lines, and no entanglements, the binary vector associated with this image will
be (1, 1, 0). We developed an open source application named ’Street Level Im-
agery Labeler (SLIL)’ (available at https://github.com/arturandre/SLIL)
to mitigate the manual labeling of the images. Figure 2 shows a screenshot
of the SLIL application while annotating a GSV image with trees, overhead
power lines, and an entanglement between them.

Labeling can be challenging for some of the images, primarily due to the
camera’s perspective. Figure 3 shows an example for which it is hard to decide
whether the top of the tree is touching or not the power lines. This occurs
because the wires and the trees seem to be entangled at the top of the im-
age. However, at the bottom of the image, it is possible to see that they are
very far apart from each other, leading to the opposite conclusion. Figure 4
shows another example where the camera is pointing in a direction parallel to
the power lines, and a tree below the power lines is very far from the cam-
era. In such images, the power lines are no longer visible when they intersect
distant trees. The default decision for all cases of doubt is that there is no
entanglement. The rationale for this decision is because captured images are
from an unconstrained urban environment, and they usually present trees and
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wires far away in the distance. Assigning a positive label to such challenging
instances could increase the number of positive misclassifications due to the
disproportionate number of such instances.

Figure 5 shows the distribution of labels for São Paulo city (left) and
Porto Alegre city (right) in the test dataset. The labels 1 and 0 indicate the
presence or absence of the objects: ’Tree,’ ’Electric wire’ and ’Entanglement’.
To compute the histograms (Fig. 5), we consider how many images are labeled
with each of the classes present in the test dataset (i.e., Tree, Electric wire,
and Entanglement) from each city separately. If an image is labeled with a
given class, it counts as one positive case of that class in the histogram. The
clear unbalance between the number of labels with ’Tree’ in São Paulo city and
’Electric wire’ in Porto Alegre city is due to how the images were collected.

2.3 Transfer learning

In the last few years, the advances in neural network architectures, mainly for
Computer Vision, made image classification an achievable task (Krizhevsky
et al., 2012). The pipeline to build an image classifier was to extract image
features heuristically and train a classifier using these features. The usual
approach now is to train a Convolutional Neural Network on a large dataset of
images, usually not related to the problem to be solved, and use the network’s
features to solve another classification problem. This approach is known as
Transfer Learning (Pan and Yang, 2009), and this section presents the network
architecture and the transfer learning approach used in this work.

MobileNetV2 (Sandler et al., 2018) is a Convolution Neural Network model
used to perform object classification, detection, or segmentation. The architec-
ture is based on MobileNet (Howard et al., 2017), a simplified model adapted
to mobile devices with several hardware constraints as smartphones. Figure 6
shows a block diagram of the MobileNetV2 architecture used in this work.
The above part of the diagram shows the main pipeline of the network. The
network starts with a triplet composed of a convolutional filter layer, followed
by a batch normalization layer and a Rectified Linear Unit (ReLU6) activa-
tion layer. After the triplet, the architecture has a set of seventeen Inverted
Residual blocks (the bottom part of Fig. 6) and another triplet similar to the
first one. A global average pooling (Lin et al., 2013) and a final dense layer
(classification head) with 1000 neurons finish the model. An implementation
of MobileNetV2 is available in the Github repository (tensorflow, 2018). The
repository also has a set of weights obtained through training on the ImageNet
dataset (Deng et al., 2009).

To classify images with or without the entanglement of power lines and
trees, we opted for a binary classifier. Therefore, we replace the final Global
Average Pooling (GAP) and the one thousand neurons dense layer with an-
other GAP layer and a different classification head with three fully connected
layers with 1080, 540, and one neuron, respectively, as a transfer learning
strategy. Figure 7 shows the proposed classification head, and Fig. 8 shows
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an overview of the modification performed (concerning the MobileNetV2). All
the last three fully connected layers are equipped with the sigmoid function
as their activations. To finish the transfer learning approach, we fine-tuned
the weights of the last three layers (i.e., all previous layers’ weights are the
same as in the repository) using the dataset proposed in this paper. With this
approach, it is possible to take advantage of a much bigger dataset (ImageNet)
without training the network from scratch (Pan and Yang, 2009).

A fine-tuning process was performed by training the network for 1000
epochs, and we selected the epoch with the best validation accuracy to be
the final network rather than the last epoch. This strategy is a way to avoid
over-fitting and having a better accuracy in images other than those from the
training dataset This strategy is similar to early stopping, in which a set of
images, called validation dataset, is kept separated from the training dataset
and used to estimate the accuracy of the network in new images. The rea-
son to choose this strategy rather than early stopping is due to the stochastic
behavior introduced by the mini-batches approach used during training due
to memory restrictions. We observed that small mini-batches cause the loss
function to become noisier, as demonstrated both theoretically and empirically
by (Qian and Klabjan, 2020).

2.4 Network Results Interpretation

Interpreting the results of a network is an essential topic of research, and there
are several methods proposed in the literature (Zhang and Zhu, 2018) to help
with that. We use a generalization of the Gradient-weighted Class Activation
Map (Grad-CAM++) (Chattopadhyay et al., 2017), an improved modification
of Grad-CAM (Selvaraju et al., 2017), to interpret and qualitatively assess the
results. The Grad-CAM++ method’s idea is to build an image with a weighted
sum of the positive partial derivatives of the output of the network (just before
the last sigmoid activation) with relation to the last convolutional layer feature
maps (activation map) to show which pixels are relevant to classify the image
according to a specific target label defined by the user or by the assessment.
The images generated by this method, or saliency maps, are color mapped from
blue to red, indicating regions that are less to more relevant to the classification
output. Figures 9a and 9b show an example of a tree entanglement with power
lines and its Grad-CAM++ output. The network correctly classified the image
as having an entanglement and the Grad-CAM++ method correctly points
the position of the pixels in the entanglement (reddish points). Figures 9c and
9d show another example with no tree entanglement and its corresponding
Grad-CAM++ output, respectively. In this case, the network did not classify
the image as having an entanglement, but it correctly identified the relevant
regions (in red) for the classification, namely the image regions with wires
and tree canopies. To assess the results qualitatively, one can visually inspect
the Grad-CAM++ method’s output map for a test image and check if the
classification is correct due to the expected visual clues or not.
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3 Results

This section presents the results of the modified MobileNetV2 architecture.

3.0.1 Training and validation

To train the network, 5091 images (with corresponding labels indicating entan-
glements) were used, 2484 images from the São Paulo city dataset, and 2607
from Porto Alegre (POA) dataset explained in Section 2. The training process
uses continuously 80% of the training set effectively for training and 20% of
the training set to validate and control the whole process. The network took
around 340 epochs to converge, and the final validation accuracy was 81.94%
(on the 20% of the training set) while the training accuracy was 96.64% (on
the 80% of the training set).

Table 1 presents a confusion matrix with the number of correctly and
incorrectly classified images. When the class assigned by the classifier (rows)
agrees with the ground truth (columns), we say the classification is correct
(top-left position of the table, or true positive; or bottom right corner of the
table, or true negative). When the class assigned by the classifier disagrees with
the ground truth, we say the classification is incorrect (top-right position of the
table, or false positive; or bottom left corner of the table, or false negative). A
row (column) with value 1 represents images classified (manually annotated)
as positive cases. The value 0 in a row (column) represents images classified
(manually annotated) as negative cases.

3.0.2 Test datasets

From the 6092 images collected (see Sec. 2.1), 1001 images compose the test
dataset. There are 504 images from Porto Alegre city and 497 images from São
Paulo city. The test dataset contains no images used in the training process,
and it is intended to assess the capability of generalization of the network.

Table 2 shows three confusion matrices for the overall test set, the São
Paulo test set, and the Porto Alegre test set, respectively, from left to right. We
obtained an overall test accuracy of 74.63%. For São Paulo the test accuracy
was 73.64% and for Porto Alegre city, it was 75.60%. The interpretation of the
labels is the same as in Tab. 1, and the results are similar to the ones observed
earlier.

3.1 Qualitative analyses of the errors

This section presents a qualitative analysis based on misclassified images using
Grad-CAM++ (Sec. 2.4). Through these analyses, we can empirically find
directions to improve the classification results, potentially obtaining a better
generalization, that is, better accuracy in the test dataset.
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Figures 10a and 10b show a saliency map of a positive case. Figure 10a
was classified as a true positive; the entanglement was correctly identified. We
can visually in Fig. 10b that the true positive classification was essentially due
to the sizeable reddish region containing wires crossing through the canopy
of a tree. This is an empirical evidence that the network can correctly detect
entanglements because it is tuned to detect the relevant image features that
characterize an entanglement.

Visual inspection of several misclassified images and their corresponding
saliency maps shows that some errors are caused by:

– the viewpoint of the camera (see Figs. 11a and 11b);
– wires that seems to meet with trees far away from the camera (see Figs.

12a and 12b); and
– bad lighting conditions (e.g. poor contrast) as exemplified in Figs. 13a, 13b,

14a and 14b)

4 Discussion

The detection of entanglements between power lines and trees is a challenging
problem, and the presented solution is just a step towards solving it. A possible
improvement we plan to do is to break the problem into smaller tasks in a
divide and conquer strategy. For example, we first can detect pylons and power
lines (Cheng and Song, 2008; Lopes et al., 2015). The, we can quantify the
number of trees and the amount of greenery in ground-level images (Wegner
et al., 2016; Cai et al., 2018). Finally, the results of these two steps can be used
together with the input images in a classifier for the entanglements, possibly
improving our results. A multi-step approach like that can be interesting from
an explainability perspective, as well. One could explore how each component
of the combined influences the final classification results.

Nevertheless, such analyses are more cumbersome than using a single algo-
rithm to perform all these tasks. Moreover, the optimization of each component
in the multi-step approach is more complex. The first stage components (e.g.,
the wires detectors and vegetation quantification) can be optimized individu-
ally since their tasks are independent, but the final classifier depends on both
the results of the first stage components and the input images. Thus the opti-
mization of the last classifier would need to be carefully designed and possibly
would imply a joint optimization with the previous components.

In our dataset, the data collected was based on geographical information
containing trees and pylons, such that nearly all the images contain at least
one of these elements. An algorithm to classify images with or without trees
(power lines) would face an extreme imbalance in this dataset. In our method,
we avoid multi-step optimization and imbalance issues by optimizing a single
deep learning convolutional network directly over the entanglement task of
the input image. Notice that while the dataset is unbalanced regarding trees,
pylons, and power lines, it is balanced with entanglements.
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Although our method uses Google Street View images, it can also be gen-
eralized to any street-level imagery dataset. That is, by using a set of cam-
eras and a GPS logger on a vehicle, one can create a geo-localized street-
level imagery dataset. The INACITY documentation (Oliveira and Hirata Jr.,
2018) shows how to plug other image databases into the system. Besides, the
Python code used to train the network and the datasets are also available at
https://github.com/arturandre/tree-wires.

Dataset labeling poses one of the biggest challenges to this problem be-
cause sometimes it is hard to decide whether an image has an entanglement
(entanglement) between a tree and the electric wires. The main difficulty is
due to the camera’s point of view, but the projection from 3D to 2D can pose
some other challenges. The SLIL software is in continuous improvement, and
we plan to implement a feature to change the perspective and mitigate the
decision disambiguation.

Finally, similar works that deal with the classification problem of tree and
wire entanglements in above-ground images (i.e., satellite and airborne im-
ages (Kobayashi et al., 2009; Jwa et al., 2009)) complement the one presented
here. Their work captures a distinct point of view that could help in ambiguous
cases in which the perspective from ground-level images makes it hard to tell
whether there is an entanglement. Conversely, ground-level images provide
information about entanglements below trees’ canopies, occluded in above-
ground images, and usually have a better resolution due to the proximity to
the trees and power lines in the ground.

5 Conclusion

This paper presented a new method for detection of trees possibly interfering
with wires, or overhead power-lines. Our method reached 74, 6% accuracy in
detecting entanglements between trees and wiring and can be a valuable tool.
This new method can be coupled with the platform INACITY, and together
they can be a valuable tool for better management of the vegetation, such as
prevention of accidents, pruning, maintaining the health of the trees to reduce
the risk of diseases, and insects in the trees.

The results obtained show that the MobileNetV2 modified architecture can
be generalized to new images in cities which similar visual characteristics as
those composing our dataset. Nevertheless, our approach is general enough,
and the fine-tuning can be used to train a classifier in different datasets, even
with images with different vegetation visual characteristics.

Our qualitative analyses based on Grad-CAM++ reveals that the most rel-
evant parts of the images for the network are indeed regions predominated by
vegetation and power lines. It also worth noting that even in images misclas-
sified due to an ambiguity in the projection from the 3D world to 2D images,
or due to poor image conditions, the relevant parts still being trees and power
lines, according to the grad-CAM++ heatmap.
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Concerning the network, the dataset was not constrained to consider only
the top view of the images. Consequently, features near the image floor were
analyzed similarly to the features at the top of the images. In the future, we
plan to experiment with this idea to check if this may be a possible source of
errors.
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Tables

GT (Train)
1 0

O
u
rs 1 1127 137

0 0 2808

GT (Validation)
1 0

O
u
rs 1 238 122

0 62 597

Table 1: The confusion matrix showing the distribution of the predictions for
the training (with 4072 images) and validation datasets (with 1019 images).
In the top left corner are the number of true positives; in the top right false
positives; in the bottom left the false negatives and at the right bottom the
true negatives.

GT (Test all)
1 0

O
u
rs 1 373 86

0 166 376

GT (Test SP)
1 0

O
u
rs 1 143 20

0 109 225

GT (Test POA)
1 0

O
u
rs 1 230 66

0 57 151

Table 2: The confusion matrices showing the distribution of the predictions
for the test dataset (1001) composed with 497 images from São Paulo (SP)
and 504 from Porto Alegre (POA).
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Fig. 1: Sample images from (top row) São Paulo and from (bottom row) Porto
Alegre.

Figures
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Fig. 2: Screenshot of the ’Street Level Imagery Labeler (SLIL)’ application,
used to annotate the GSV images in the dataset.

Fig. 3: Power lines in front of tree tops
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Fig. 4: Power lines possibly intersecting with trees in the distance.

(a) (b)

Fig. 5: Histogram of with the distribution of different classes for each test
dataset in the images (a) from São Paulo and (b) from Porto Alegre.
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Fig. 6: MobileNetV2 architecture. The network has as output a vector repre-
senting of the probability distribution over the 1000 classes from the ImageNet
used to pre-train the network.

Fig. 7: New proposed classification head used on top of the MobileNetV2
backbone. We use two fully connected layers whose neurons have the sigmoid
function as activation and a final layer with a single neuron and sigmoid acti-
vation function.
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Fig. 8: MobileNetV2 architecture adaption. The network is adapted to output
a single value instead of a probability distribution over the 1000 classes from
the ImageNet used to pre-train the network.
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(a) (b)

(c) (d)

Fig. 9: (a): An entanglement between a tree and some overhead wires. (b):
The Grad-CAM++ image with the dark reddish regions indicating the places
relevant for the classification (positive) in this case. (c): An image without en-
tanglements. (d): The corresponding Grad-CAM++ showing that the network
correctly identified the regions in the image with trees and wires, even though
they do not intersect with each other.
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(a) (b)

Fig. 10: (a): Image classified as a true positive. (b): The corresponding Grad-
CAM++ image, showing that the whole extension of the wires passing through
the canopy of the tree were identified and relevant for the classification.

(a) (b)

Fig. 11: (a): An image misclassified as having an entanglement between tree
and electric wires. Due to the position of the camera just below the foliage it
seems that indeed there is an entanglement, but directly using Google Street
View to navigate to another position reveals that the entanglement does not
occur. (b): The salience map generated with the Grad-CAM++method reveals
that the main relevant regions (in red) observed by the network were the
branches and the wires in the image.



20 Artur André Oliveira et al.

(a) (b)

Fig. 12: (a): input image misclassified as a false positive. (b): Saliency map
showing relevant regions with foliage of trees and overhead wires (in red). The
wires do cross the branches of the trees on the image plane, but one can see
that they are indeed apart from each other. The depth information is not
available for the network during training so this kind of image is ’hard’ to
classify correctly.

(a) (b)

Fig. 13: (a): Input image misclassified by missing the entanglement, with a
glare effect from the Sun. (b): The saliency map shows that the regions with
the entanglement were indeed detected, but the classification was negative,
possibly because the contrast between the wires and the trees just behind
them is very poor due to the glare from the sunlight directly in the camera.



Detecting tree and wires entanglements with deep learning 21

(a) (b)

Fig. 14: (a): Input image misclassified by missing the entanglement of wires
passing just under the shadow provided by the canopy. (b): The saliency map
shows that the entanglement were detected, but similarly to the effect of the
Sun glare, one can notice the low contrast caused by the shadow of the canopy
over the wires.
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Legend to Figures

Fig. 1: Sample images from (top row) São Paulo and from (bottom row) Porto
Alegre.

Fig. 2 Screenshot of the ’Street Level Imagery Labeler (SLIL)’ application,
used to annotate the GSV images in the dataset.

Fig. 3: Power lines in front of tree tops.

Fig. 4: Power lines possibly intersecting with trees in the distance.

Fig. 5 Histogram of with the distribution of different classes for each test
dataset in the images (a) from São Paulo and (b) from Porto Alegre.

Fig. 6: MobileNetV2 architecture. The network has as output a vector repre-
senting of the probability distribution over the 1000 classes from the ImageNet
used to pre-train the network.

Fig. 7: New proposed classification head used on top of the MobileNetV2
backbone. We use two fully connected layers whose neurons have the sigmoid
function as activation and a final layer with a single neuron and sigmoid acti-
vation function.

Fig. 8: MobileNetV2 architecture adaption. The network is adapted to output
a single value instead of a probability distribution over the 1000 classes from
the ImageNet used to pre-train the network.

Fig. 9: (a): An entanglement between a tree and some overhead wires. (b):
The Grad-CAM++ image with the dark reddish regions indicating the places
relevant for the classification (positive) in this case.
(c): An image without entanglements. (d): The corresponding Grad-CAM++
showing that the network correctly identified the regions in the image with
trees and wires, even though they do not intersect with each other.

Fig. 10: (a): Image classified as a true positive. (b): The corresponding Grad-
CAM++ image, showing that the whole extension of the wires passing through
the canopy of the tree were identified and relevant for the classification.

Fig. 11: (a): An image misclassified as having an entanglement between tree
and electric wires. Due to the position of the camera just below the foliage it
seems that indeed there is an entanglement, but directly using Google Street
View to navigate to another position reveals that the entanglement does not
occur. (b): The salience map generated with the Grad-CAM++ method re-
veals that the main relevant regions (in red) observed by the network were the



Detecting tree and wires entanglements with deep learning 23

branches and the wires in the image.

Fig. 12: (a) input image misclassified as a false positive. (b): Saliency map
showing relevant regions with foliage of trees and overhead wires (in red). The
wires do cross the branches of the trees on the image plane, but one can see
that they are indeed apart from each other. The depth information is not avail-
able for the network during training so this kind of image is ’hard’ to classify
correctly.

Fig. 13: (a): Input image misclassified by missing the entanglement, with a
glare effect from the Sun. (b): The saliency map shows that the regions with
the entanglement were indeed detected, but the classification was negative,
possibly because the contrast between the wires and the trees just behind
them is very poor due to the glare from the sunlight directly in the camera.

Fig. 14: (a): Input image misclassified by missing the entanglement of wires
passing just under the shadow provided by the canopy. (b): The saliency map
shows that the entanglement were detected, but similarly to the effect of the
Sun glare, one can notice the low contrast caused by the shadow of the canopy
over the wires.
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26 Artur André Oliveira et al.

Qian, X. and Klabjan, D. (2020). The impact of the mini-batch size on
the variance of gradients in stochastic gradient descent. arXiv preprint
arXiv:2004.13146.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–
4520.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra,
D. (2017). Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on
computer vision, pages 618–626.

tensorflow (2018). tensorflow/mobilenet v2.py at github. https:

//github.com/tensorflow/tensorflow/blob/master/tensorflow/

python/keras/applications/mobilenet_v2.py. Access Jan 22nd, 2021.
®Grab and Contributors, O. (2019). Openstreetcam. https://

openstreetcam.org/. Access Jan 22nd, 2021.
Wegner, J. D., Branson, S., Hall, D., Schindler, K., and Perona, P. (2016).
Cataloging public objects using aerial and street-level images-urban trees.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6014–6023.

Yao, W. and Fan, H. (2013). Automated detection of 3D individual trees along
urban road corridors by mobile laser scanning systems. In Proceedings of the
International Symposium on Mobile Mapping Technology, Tainan, Taiwan,
pages 1–3.

Zhang, Q. and Zhu, S. (2018). Visual interpretability for deep learning:
a survey. Frontiers of Information Technology & Electronic Engineering,
19(1):27–39.


