Detection of thin and ramified structures in images using Markov random fields and perceptual information

  • Print


Line- curve-like, elongated and ramified structures are commonly found inside many known ecosystems. In biomedicine and biosciences, for instance, different applications can be observed. Therefore, the process to extract this kind of structure is a constant challenge in image analysus problems. However, various difficulties are involved in this process. Their spectral and spatial characteristics are usually very complex and variable. Considering specifically the thinner ones, they are very "fragile" to any kind of process applied to the image, and then, it becomes easy the loss of crucial data. Another very common problem is the absence of part of the structures, either because of low image resolution and image acquisition problems or because of occlusion problems. This work aims to explore, describe and develop techniques for detection/segmentation of thin and ramified structures. Different methods are used in a combined way, aiming to reach a better topological and perceptual representation of the structures and, therefore, better results. Graphs are used to represent the structures. This data structure has been successfully used in the literature for the development of solutions for many image processing and analysis problems. Because of the fragility of the kind of structures we are dealing with, some computer vision principles are used besides usual image processing techniques. In doing so, we search for a better "perceptual understanding" of these structures in the image. This perceptual information along with contextual information about the structures are used in a Markov random field, searching for a final detection through an optimization process. Lastly, we propose the combined use of different image modalities simultaneously. A software is produced from the implementation of the developed framework and it is used in two application in order to evaluate the proposed approach: extraction of road networks from satellite images and extraction of plant roots from soil profile images. Results using the proposed approach for the extraction of road networks show a better performance if compared with an existent method from the literature. Besides that, the proposed fusion technique presents a meaningful improvement according to the presented results. Original and promising results are presented for the extraction of plant roots from soil profile images.

 Return to Dissertations list.


August 28, 2012
Auditório Antonio Gilioli, bloco A
Cidade Universitária
São Paulo
Talita Perciano Costa Leite
Prof. Dr. Hirata Junior, Roberto
Theses USP
Full text
Joomla SEF URLs by Artio