
Journal of Neuroscience Methods 93 (1999) 121–131

Computer-vision-based extraction of neural dendrograms

Roberto Marcondes Cesar Jr. a,b,*,1, Luciano da Fontoura Costa a,2

a Cybernetic Vision Research Group, GII-IFSC-Uni6ersity of São Paulo, Caixa Postal 369, São Carlos, SP 13560-970, Brazil
b Department of Computer Science, IME-Uni6ersity of São Paulo, Rua do Matão, 1010, São Paulo, SP 05508-900, Brazil

Received 31 December 1997; received in revised form 3 July 1999; accepted 18 August 1999

Abstract

This work introduces a new approach to the characterization of neural cells by means of semi-automated generation of
dendrograms; data structures which describe the inherently hierarchical nature of neuronal arborizations. Dendrograms describe
the branched structure of neurons in terms of the length, average thickness and bending energy of each of the dendritic segments
and allow in a straightforward manner, the inclusion of additional measures. The bending energy quantifies the complexity of the
shape and can be used to characterize the spatial coverage of the arborizations (the bending energy is an alternative for other
complexity measures such as the fractal dimension). The new approach is based on the partitioning of the cell’s outer contour as
a function of the high curvature points followed by a syntactical analysis of the segmented contours. The semi-automated method
is robust and is an improvement on the time consuming manual generation of the dendrograms. Several experimental results are
included in this paper which illustrate and corroborate the effectiveness of the approach. The technique presented in this paper
is limited to planar neurons but could be extended to a 3D approach. © 1999 Published by Elsevier Science B.V. All rights
reserved.

Keywords: Neural shape; Computer vision; Dendrograms; Curvature; Formal grammars; Image processing

www.elsevier.com/locate/jneumeth

1. Introduction

Different problems in the analysis of neural cells have
been addressed in the literature, ranging from com-
puter-aided extraction of neural data from micrographs
(also known as neuron reconstruction) (Wann et al.,
1973; Capowski and Sedivec, 1981) to the measurement
of quantitative features such as area, length, number of
branch points, orientation histograms and convex hull
(e.g. Ventimiglia et al., 1995). A particularly important
related research field is the computer-aided analysis of
neural morphology and automated neuromorphometry,
where numerical measurements are extracted allowing
quantitative analysis of neural shape (Murray, 1995;
Panico and Sterling, 1995; Smith et al., 1996; Costa et
al., 1998). Additional examples of works dealing with

quantitative analysis of neuronal morphology include
(Sholl, 1953; Ramon-Moliner, 1962; Smith et al., 1989;
Masseroli et al., 1993; Matesz et al., 1995). It is impor-
tant to note that neural morphology is one of the most
relevant parameters in the analysis of neurons, since
this kind of information can be used for simulation or
studies dealing on interplay between form (morphol-
ogy) and function (Saito, 1983; Fukuda et al., 1984;
Poznanski, 1992; Mainen and Sejnowski, 1996; Costa et
al., 1998). This work introduces a new approach to
neural shape representation and analysis through semi-
automated dendrogram generation.

The newly proposed framework is based on the
following steps: (a) an effective algorithm for determi-
nation of branch points and terminations has been
developed with basis on image analysis techniques; (b)
the obtained branch points and terminations are graph-
ically presented to the user, who can check the results
and edit the representation if needed; and (c) the den-
drogram is derived by using computational grammars.
The remainder of the present paper elaborates on these
three principal processes and the respectively obtained
results. The computational background for the imple-

* Corresponding author. Tel.: +55-16-273-9858; fax: +55-16-271-
3616.

E-mail addresses: cesar@ime.usp.br (R.M. Cesar, Jr.), lu-
ciano@ifqsc.sc.usp.br (L. da Fontoura Costa)

1 http://www.ime.usp.br/�cesar
2 http://www.ifqsc.sc.usp.br/visao

0165-0270/99/$ - see front matter © 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 5 -0270 (99 )00120 -X



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131122

mentation of the techniques discussed in this paper may
be found in Castleman (1996) and Cesar and Costa
(1997a) for the material about digital contours and
curvature; in Brigham (1974) for the material about
Fourier transforms and algorithms; and in Fu (1982)
for the material about syntactical pattern recognition.

This work starts by establishing a conceptual
overview of the proposed method, as well as the basic
terminology that is adopted throughout the paper (Sec-
tion 2.1). The method for neural contour partitioning is
introduced in Section 2.2.1. Finally, the parsing analy-
sis and the subsequent dendrogram generation are dis-
cussed in Sections 2.2.2 and 2.2.3, respectively. Section
2.2.4 presents how, once the dendrogram has been
extracted, it is possible to obtain the skeleton of the
neural cell in a simple and straightforward manner. The
skeleton is a structure composed by a set of line seg-
ments (which may be one pixel wide) that represents the
neural cell, including many different useful features for
shape analysis (Ballard and Brown, 1982). Experimen-
tal results using real neurons are presented, thus cor-
roborating the effectiveness of this approach. The
article concludes with some comments on the ongoing
and future research, presented in Section 4. It is worth
emphasizing that the method proposed in this paper
may be understood conceptually from Sections 1 and
2.1. Nevertheless, since this does not supply enough
information allowing the method to be effectively im-
plemented, the necessary details are given in Section
2.2.

2. Material and methods

2.1. Preliminary considerations

2.1.1. Conceptual o6er6iew
Among the different approaches to the characteriza-

tion of neural cells, the so called dendrogram (Sholl,
1953; Poznanski, 1992; de Schutter and Bower, 1994;
Turner et al., 1995; Velte and Miller, 1995; Cesar and
Costa, 1997b) deserves special attention because of the
high degree of comprehensiveness and meaningfulness
made explicit by this data structure (tree). When ex-
tended to include not only the underlying branching
structure of biological patterns, but also the length and
other physical properties, such as diameter, thickness
and curvature, along each branch, the binary tree cre-
ated to describe such branched structures receives the
name of dendrogram. Fig. 3 presents a neural dendrite
(respective to the neural cell presented in Fig. 1, which
has been reproduced from Smith et al. (1989)), whose
respective dendrogram is shown in Fig. 7. In this exam-
ple, the length of each dendritic segment (i.e. arc length
between each pair of bifurcations and terminations) is
proportional to the length of the horizontal stripes
represented in the dendrogram.

In spite of the importance of such data structures as
subsidy for the characterization, classification, model-
ing and simulation of natural structures, the possibility
of computer-based extraction of dendrograms from pic-
torial representations has received scant attention in the
literature. Though developed in a 2D space, the tech-
nique described in the current article can be used to
process some 3D cells, especially those presenting rela-
tively few processes and/or presenting a predominantly
planar structure, in terms of their 3D projections. Typ-
ical examples of predominantly planar neurons are
provided by the dendritic arborizations of some neu-
rons in the retina of vertebrates. Dendrograms of such
neural cells are important not only as invaluable re-
sources for simulations of the respective electrochemical
neural activity (transmission cable modeling) (e.g. Poz-
nanski, 1992), but also as a means for the effective
characterization and classification of neural cells and
structures. Considering that neural dendrograms have
been traditionally traced by human operators, involving
a long, tedious and often subjective task, the automa-
tion of such a process constitutes an important resource
for neuroscientific research.

The method introduced in this paper is based on
contour analysis of neural cells. In order to gain insight
into the different steps involved in the method, specific
upper-left dendrite in Fig. 1, which is shown in detail in
Fig. 2(a) will be used as a reference example throughout
the paper. This dendrite is shown in more detail in Fig.
3. The proposed approach can be easily understood
from the schematic sequence shown in Fig. 2. The basic

Fig. 1. Cell used in the experiments of this paper, which has been
adapted from Smith et al. (1989), where further details may be found
(reprinted from Smith Jr TG, Marks WB, Lange GD, Sheriff WH,
Neale EA. A fractal analysis of cell images, J. Neurosci. Methods,
1989;27:173–80, with permission from Elsevier Science).



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131 123

Fig. 2. Basic underlying idea of the method: the algorithm analyses
the outer and smaller most dendritic branches first, as if a process of
cutting off these branches were being carried out.

parametric contour representation of the dendrite lays
in the parsing procedure, as it is explained below, which
identifies the portions of the contour that are elimi-
nated as the syntactic productions are applied.

The present approach has considered the analysis of
the dendritic branches directly in terms of the outer
boundaries of the cell, as illustrated in Fig. 4. Two
special kind of critical or dominant points along such
contours are considered in the present article: the termi-
nations, identified by the prefix e, and the branch
points, identified by b, which are characterized as be-
longing to convex and concave portions of the contour
(the concavity can be inferred from the sign of the
curvature at the contour points). Assuming that such
points have been correctly identified, it is possible to
approach the problem of dendrogram extraction in
terms of computer grammars, more specifically through
the parsing of a basic sequence defining the underlying
structural atoms in dendrograms, namely the sequence
termination/branch-point/termination. However, this
parsing can not be performed directly, since there are
ambiguities in such grammatical representations of den-
dritic trees. The solution to such problems is described
in the following sections.

As has been commented, the method attempts to
identify the outer and smaller most dendritic branches
first (see Fig. 2), proceeding recursively as these struc-
tures are identified. The detection of these structures is
based on the identification of terminations and branch
points along the contour. The latter step is carried out
from the analysis of the curvature along the dendritic
contour, while the former is done through a syntactical
analysis of the string obtained from the sequence of
terminations and branch points. The output of the
syntactical procedure is a data structure, known as a
parsing tree (Fu, 1982), which describes the dendritic
branching structure, and from which the dendrogram
can straightforwardly be obtained. These three basic
steps of the method, namely contour segmentation in
terms of terminations and branch points, syntactical
analysis and dendrogram generation from the parsing
tree, constitutes the kernel of the proposed approach,
being explained in detail in Sections 2.2.1, 2.2.2 and
2.2.3, respectively.

2.1.2. Terminology and con6entions
A complete set of relatively formal specific terms

related to parts of neural cells is introduced here in
order to facilitate the description of the algorithms in
the following sections. Fig. 3 presents an image of a
dendrite illustrating the basic terminology adopted
throughout the paper. Fig. 3 shows the aforementioned
neuron emphasizing one of its dendrites, which corre-
sponds to the complete dendritic structure originating
at the soma. The dendrite is composed of a set of
dendritic segments delimited by a branch point on one

Fig. 3. Terminology adopted throughout the paper.

idea underlying the method is that the algorithm tries
to identify the outermost (and smaller) dendritic
branches (see the adopted terminology in Fig. 3). When
such a dendritic branch is identified, the respective
measures are taken (e.g. segments length and average
width) and stored in the dendrogram data-structure.
Once this operation has been carried out, the analyzed
dendritic branch can be skipped, as if it had been ‘cut
off’ (see Fig. 2a and b). The algorithm then proceeds in
a similar way in order to find the next outermost (and
smaller) dendritic branch (see Fig. 1b–f). The relation
between the idea of pruning distal branches with the



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131124

Fig. 4. A dendrite with its segmentation points (branch points and terminations) indicated. Contour segments of a dendrite and its segmentation
points are automatically detected by the segmentation method.

side and a termination or another branch point on the
other side.

The branching structures that emanate from other
branches are called dendritic branches, as depicted in
Fig. 3. The analysis of each dendrite is carried out from
its outer contour, which begins and ends at the soma.
The success of the method does not depend on the
direction which the contour is tracked (i.e. clockwise or
counterclockwise). It is important to emphasize that
this direction determines the sign of the curvature of
the terminations and branch points.

A bifurcation of the dendrite is defined by a branch
point and two associated lateral branch points, as indi-
cated in Fig. 3. The central branch point is connected
to a termination by the internal arc. In a similar man-
ner, the termination is connected to the next branch
point by the external arc. It is important to emphasize
that the definition of internal and external arcs is done
with respect to each branch point. This means that, the
internal arc with respect to a given branch point may be
the external arc with respect to a previous or a consec-
utive branch point. For instance, in Fig. 3, the indi-
cated internal arc is defined in this manner with respect
to the branch point where it originates. The algorithm
keeps track of such situation by analyzing the dendrite
with respect to the current branch point. In this work,

any contour portion will be henceforth referred as an
arc.

2.2. The dendrogram generation method

2.2.1. Contour segmentation
The methods presented in this section are based on

the multiscale curvature approach (derived from the
cur6egram) introduced in Cesar and Costa (1997a). The
framework assumes the neural cell is represented in
terms of its outline contour, which is defined by a
parametric curve C(n)= (x(n), y(n)), where the
parameter n=0,…, N−1 and N is the number of
points along the contour. The number of points along
the contour depends whether the contour has been
extracted directly from the digital image or interpolated
so that n can be taken as the arc length parametrization
of C (in this case, the distances between consecutive
points are equal). A detailed discussion about the im-
portance of the contour tracking algorithm with respect
to the estimation of curvature may be found in Bennett
and MacDonald (1975). A complex representation of
the contour follow from the definition of the complex
signal u(n), i.e. u(n)=x(n)+ iy(n) and i=
−1. The
Fourier transform pair of u(n) is given in Eqs. (1) and
(2) (Brigham, 1974):



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131 125

U(s)=F{u(n)}= %
N−1

n=0

u(n) e− i2p(sn/N), s=0,…, N−1,

(1)

u(n)=F−1{U(s)}=
1
N

%
N−1

s=0

U(s) ei2p(sn/N). (2)

In order to estimate the discrete derivatives of a
digital signal u(n), the auxiliary function h(s) should be
defined as expressed by Eq. (3):

h(s)=
> s, if s=0, 1,..., N−floor(N/2)−1

N−s, if s=N−floor(N/2),
N−floor(N/2)+1, ..., N−1, (3)

where floor(N/2) is the traditional truncation function
that returns the largest integer that is smaller than N/2.
Function h(s) is a useful tool for implementing the
alignment with the standard indexing representation
normally produced by the FFT (because FFT al-
gorithms usually lead to a frequency representation
formed by the second part of a period followed by the
first part of the next period). Therefore, the first and the
second derivatives of u(n) can be defined in terms of
U(s) as expressed by Eqs. (4) and (5):

u; (n)=F−1{U: (s)}=F−1{i2ph(s)U(s)}, (4)

ü(n)=F−1{U8 (s)}=F−1{− (2ph(s))2U(s)}, (5)

where n=0, 1, …, N−1 and s=0, 1,…, N−1. The
differentiation process defined by Eq. (4) and Eq. (5)
corresponds to high-pass filters, which can increase the
high-frequency noise commonly found in digital con-
tours. In order to cope with such a problem, the
differentiated spectra should be smoothed by using
a low-pass filter to control the noise. By taking
the Gaussian Ga(s) as low-pass filter, where Ga(s)=
exp(− (ah(s))2), the smoothed version u(n, a) of u(n)
can be estimated as:

u(n, a)=F−1{U(s)Ga(s)}. (6)

The above equation is equivalent to a convolution
operation due to the convolution theorem (Brigham,
1974). Gaussian smoothing implies an undesired effect
known as contour shrinking (Cesar and Costa, 1997a),
which can be avoided through perimeter preservation.
The perimeter of the original neural contour can be
estimated as:

L= %
N−1

n=0

�u(n)−u(n−1)�,

where �u(n)� denotes the complex modulus (absolute
value of the complex number) and the convention that
u(−1)=u(N−1) is adopted (this is needed because
the signal u represents a closed periodic contour stored
in a vector). The perimeter of the filtered contour (at
scale a) can be estimated analogously, and we denote it
as L(a). The amount of shrinkage can be calculated as:

P(a)=
L

L(a)
.

The differentiated signals u; (n, a) and ü(n, a), filtered at
scale a and corrected in order to prevent the undesir-
able shrinking effect, can be given by Eqs. (7) and (8):

u; (n, a)=P(a)F−1{U: (s)Ga(s)}, (7)

ü(n, a)=P(a)F−1{U8 (s)Ga(s)}. (8)

The multiscale curvature description of C(n), known as
cur6egram (Cesar and Costa, 1997a), is given by Eq.
(9):

k(n, a)=
−Im{u; (n, a)ü*(n, a)}

�u; (n, a)�3 , (9)

where z* denotes the complex conjugate. The curve-
gram k(n, a) describes the curvature of C(n) (recall that
C(n) is the original contour that has been represented
by the complex-valued signal u(n)) analyzed at scale a
(one can also think that k describes the curvature of a
family of smoothed curves indexed by the scale parame-
ter a). Fig. 5(a) presents the signals x(n) and y(n)
obtained from the neural cell seen in Fig. 2. Fig. 5(b)
and (c) show the corresponding curvatures for a small
and for a large scale, respectively. As can be seen, fine
details are filtered out from the curvature as the analyz-
ing scale increases.

An important shape feature that can be measured
from the curvature is the so called bending energy
(Cesar and Costa, 1997a), which express the amount of
energy that would be spent in order to bend a given
shape into its lowest energy state, namely a circle
(Young et al., 1974; Cesar and Costa, 1997a). Let
k(n, a0) be the estimated curvature at scale a0 (obtained
from the curvegram). Then the mean bending energy is
defined as:

B(a0)=
1
N

%
N−1

n=0

k(n, a)2. (10)

The bending energy has been extensively discussed in
the context of neural shape analysis elsewhere (Cesar
and Costa, 1997a). It is important to observe that the
bending energy can be also calculated with respect to a
portion of the contour, which is actually done in this
work, where the bending energy of the separated den-
dritic segments is calculated and represented in the
respective dendrogram.

The identification of the neural contour terminations
and branch points is carried out by choosing an appro-
priate scale a0, followed by two threshold operations,
one for the detection of the branch points of the
neurons (defined by negative minima of curvature,
which characterize concavities, assuming that the con-
tour is traversed counterclockwise), and other for the
detection of the terminations (defined by positive max-
ima of curvature characterizing convexities, assuming



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131126

Fig. 5. (a) Signals x(n) (–) and y(n) (– –) of the contour of the neuron shown in Fig. 2; (b) curvature of the contour for a small scale, where
the fine details can be detected; (c) curvature of the contour for a large scale, where only the overall structure of the original contour remains.
It is assumed that alarge\asmall.

that the contour is traversed counterclockwise). Fur-
thermore, it is assumed that there is a minimum neigh-
borhood around each dominant point (be it a
termination or a branch point) inside which there must
be only one dominant point. The algorithm for domi-
nant point detection can be summarized as follows:

1. Algorithm 1: dominant point detection
2. Calculate k(n, a0), as defined by Eq. (9), where a0

is a constant;
3. Find all branch points defined as B={u(n) such

that k(n, a0)BTB, and k(n, a0) is a local negati6e
minimum};

4. Find all terminations defined as E={u(n) such
that k(n, a0)\TE, and k(n, a0) is a local positi6e
maximum};

5. Filter E and B, so that the minimum neighbor-
hood around each termination (or branch point) con-
tain only one termination (or branch point);
6. End.

In our implementation, k(n, a0) is a local positive
maximum if k(n, a0) \ k(n+1, a0) and k(n, a0) \
k(n−1, a0). The local negative minimum may be
defined analogously. Algorithm 1 requires the specifica-
tion of four parameters, the analyzing scale a0, the
thresholds TE and TB and the size of the minimum
neighborhood for dominant points. These parameters
are set by three semi-automated procedures that may
require operator interventions. A fourth semi-auto-
mated procedure is also carried out, which asks the
operator for final adjustments in the contour partition-
ing, both for the inclusion of missing and exclusion of



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131 127

false dominant points detected by Algorithm 1. Details
about the implementation of these procedures using
graphical user interfaces may be obtained by request
from the authors. In all experiments, the minimum
neighborhood for the digitized version of the contour
has been set as three points on each side of the domi-
nant point. Once each dendrite is properly segmented,
the program execution continues by analyzing each
dendrite separately. In order to accomplish this task,
each dendrite is reparameterized, with the parameter
along the dendrite starting from the first branch point
on the soma, tracking the dendrite boundary and termi-
nating on the second branch point on the soma. Hence,
in the example of Fig. 4, the new parameterization
starts for t=0 in the e0 on the soma, continues reach-
ing the first termination located at t=197, and so on.

2.2.2. Parsing
The concepts developed in this section, which are

central to the dendrogram generation, are based on the
structural or syntactic approach for pattern recognition
(Fu, 1982). The objective of this step is to derive a
parsing tree reflecting the structure of the neural den-
drite. The parsing step starts by labeling the dominant
points obtained by the contour partitioning algorithm
described in last sections, so that the initial and final
points of the dendritic branch are labeled with the
symbols ‘e0’ and ‘ef ’ (see Fig. 4), respectively. Each
termination point is labeled by the symbol ‘e ’ and each
branch point by the symbol ‘b ’ (refer to Fig. 4). There-
fore, we define a grammar G= (VN, VT, P, S), where
VN={E}, VT={e0, ef, e, b}, S={E0}, and P corre-
sponds to the following production rules:
1. E0�e0Eef

2. E�EbE
3. E�e

As an illustration, the corresponding symbols have
been indicated in the segmented dendrite in Fig. 4. As
can be seen, the string representing that dendrite is:
e0ebebebebebeef. The bottom-up parsing procedure is
(seemingly) very simple, due to the simplicity of the
grammar. The implementation of the parsing procedure
makes use of a data structure called a ternary tree,
which may have up to three derivations per node. This
tree is constructed incrementally during the parsing
analysis.

It is important to note that, during the execution of
the bottom-up syntactical analysis, the algorithm
should keep a control list that indicates the upper nodes
of the unfinished parsing tree, i.e. those nodes that have
been already created but not yet assigned to the hier-
archy. This list, referred to henceforth as the control
string, plays a central role in the parsing analysis, as
well as in the determination of the lateral branch
points, as it will be explained. A preliminary version of
the algorithm is:

1. Algorithm 2: Parsing (Version 1)
2. Replace all the occurrences of ‘e ’ by ‘E ’, through

the application of rule 3;
3. Replace the occurrences of ‘EbE ’ by ‘E ’, through

the application of rule 2;
4. Replace the occurrence of ‘e0Eef ’ by ‘E0’, through

the application of rule 1;
5. End.

It is useful to compare this algorithm with the proce-
dure explained conceptually in Section 2.1.1 and sum-
marized in Fig. 2. The applications of step 3 of the
above algorithm corresponds to the ‘cutting’ of an
outer and smaller most dendritic branch.

Nevertheless, there is an important problem associ-
ated with step 3 of algorithm 2 since different deriva-
tions may lead to the same string, which means that the
order of application of rule 2 defines different parsing
trees. As a means of circumventing this ambiguity, a
heuristic is applied in step 2 of algorithm 2. In order to
understand how this works, imagine that each applica-
tion of rule 2 of the grammar during the parsing
procedure is equivalent to cut out a branch correspond-
ing to the respective ‘EbE ’ that is being substituted by
‘E ’. Then, the key idea underlying the heuristics is to
construct the parsing tree by cutting the smaller, which
are also the last, outermost branches first. Therefore, a
simple analysis of the dendritic tree of Fig. 4 indicates
that the correct order of application of rule 2 is that
presented in Fig. 6. The parsing algorithm must decide
whether or not to make the substitution EbE [E once
an EbE sub-string is found during the parsing.

This decision, which is based on a comparison be-
tween the arc length of segments of the current branch
and the arc length of segments of its neighbor branches,
is taken as follows. In the example of the dendrite of
Fig. 4, the application of the step two of algorithm 2
leads to the following substitutions in the control
string:

e0ebebebebebeef�e0EbEbEbEbEbEef (11)

Having the symbols in Fig. 4 been properly enumer-
ated, the following notation can be used:

e0e1b1e2b2e3b3e4b4e5b5e6ef�e0E1b1E2b2E3b3E4b4E5b5E6ef

(12)

Refer to Fig. 6. It is worth emphasizing that the
enumerated symbols are used in the paper only for
explanation purposes and that the algorithm actually
manipulates only the symbols defined in the formal
grammar introduced in the beginning of this section.
First, once an EbE sub-string is found, which will be
called the current EbE, the algorithm tests whether
there is another EbE sub-string to the right of the
current EbE, where the second ‘E ’ of the first sub-string
is the first ‘E ’of the second. Following the notation of
the above example indicated by Eq. (12) the algorithm



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131128

Fig. 6. Parsing tree obtained by the parsing algorithm for the dendrite shown in Fig. 4.

first finds the sub-sequence E1b1E2 and verifies whether
the union of this sub-string with the next two symbols
actually forms the sub-string E1b1E2b2E3. In this case,
the arc length between the first ‘b ’3 and the middle ‘E ’
(i.e. the internal arc, see Fig. 3) is compared to the arc
length between this same middle ‘E ’ and the second ‘b ’
(i.e. the external arc, see Fig. 3). In the case of the
current example, the length of the arc between b1 and
E2 (the current right internal arc) is compared to the
length of the arc E2 and b2 (the current right external
arc; refer to Fig. 6).

In a similar manner, the algorithm checks whether
there is another EbE sub-string to the left of the current
EbE, where the union of these two sub-strings forms
the sub-string ‘EbEbE ’. In this case the length of the
left internal arc is compared to the length of the left
external arc:

if (length(left internal arc)5 length(left external arc))
and (length(right internal arc)5 length(right external

arc))
then

the sub-string of the current EbE is replaced by E.
else

the algorithm skips the first sub-string and tries to
substitute the second EbE sub-string, repeating the
same test.

These two comparisons are made assuming the exis-
tence of a sub-string ‘Eb ’ to the left and a sub-string
‘bE ’ to the right of the current ‘EbE ’. In the case when
one (or both) of them are not present, the respective(s)
test is just ignored, which occurs when the branch does
not have neighboring branches to the right or to the left
(or both). For instance, in the example of Fig. 4 the
sequence ‘E1b1E2’ (corresponding to a ‘EbE ’ sub-string)
has the sub-string ‘b2E3’ (corresponding to a ‘bE ’ sub-
string to the right), allowing the test to be carried out
with respect to the right side; on the other hand, this
same sequence ‘E1b1E2’ does not present a previous
branch (a branch to the left; hence, there is no sub-
string ‘Eb ’ to the left) and the test with respect to the
left side is simply ignored.

This heuristic induces the algorithm to attempt mak-
ing substitutions corresponding to the smaller branches
first, as desired. Therefore, algorithm 2 should be up-
dated to version 2, which will be called algorithm 3:

1. Algorithm 3: Parsing (Version 2)
2. Change all the occurrences of ‘e ’ by ‘E ’, through

the application of rule 3;
3. Find the first occurrence of ‘EbE ’ of the control

string and call it ‘current ‘‘EbE ’’ ’
4. While there are remaining ‘EbE ’ sub-strings do:

3 The contour branch point corresponding to the ‘b ’, or any other
symbol in a string, will be henceforth referred to as ‘first ‘‘b ’’ point’
and so on, for simplicity’s sake.



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131 129

5. If a ‘bE ’ sub-string to the right of the current ‘EbE ’
is found then

6. If (length(right internal arc)5 length(right exter-
nal arc)) then

7. Substitution–flag= true;
8. Else

9. Substitution–flag= false;
10. End–if /*of step 6*/

11. Else
12. Substitution–flag= true;

13. End–if /*of step 5*/
14. If a ‘Eb ’ sub-string to the left of the current ‘EbE ’
is found then

15. If (length(left internal arc)5 length(left external
arc)) then

16. Substitution–flag= true;
17. Else

18. Substitution–flag= false;
19. End–if /*of step 15*/

20. Else 21. Substitution–flag= true;
22. End–if /*of step 14*/
23. If (Substitution–flag= true) then

24. Change the current ‘EbE ’ by ‘E ’ of the control
string, following rule 2
25. End–if /*of step 23*/

26. Find the next occurrence of ‘EbE ’ of the control
string and call it ‘current ‘‘EbE ’’ ’
27. End–while /*of step 4*/
28. Change the occurrence of ‘e0Eef ’ by ‘E0’, through
the application of rule 1;
29. End.

2.2.2.1. Detection of lateral branch points. An additional
important feature of the parsing procedure is that it
allows a region-based segmentation of the neural cell in
terms of its dendritic segments. Fig. 4 presents a sche-
matic illustration of the concepts involved in this seg-
mentation process. First, note that each dendritic
segment is defined in terms of its respective branch
point, which is located by the (contour) segmentation
algorithm introduced previously, and the point located
on the opposite side of the dendritic segment, called
lateral branch point (see Fig. 4). The lateral branch
points of the experiments of this work are denoted by
‘°’, as illustrated in Fig. 4. Each branch point is associ-
ated to two lateral branch points (the left branch point
and the right branch point), since two dendritic seg-
ments appear from a branch point, and there is always
a termination or a dendritic branch between the branch
point and its respective lateral branch point. The con-
trol string provides a straightforward heuristics that can
be applied to define and locate the lateral branch point.
Recall that the dominant points found by the segmenta-
tion algorithm define a contour partitioning in terms of
segments between each pair ‘eb ’ or ‘be ’, and that the
initial control string of the dendritic tree of Fig. 4 is

e0ebebebebebeef. Therefore, the left lateral branch point
of the first branch point of this dendritic tree is defined
as the nearest point belonging to the segment com-
prised between the next two symbols to the left of this
branch point, i.e. between e0 and e1 in our example.
Both branch points and associated lateral branch points
are indicated in Fig. 4. All other lateral branch points
can be located during the parsing procedure in a similar
manner, by searching for the nearest point (to the
current branch point) belonging to the segment defined
between the next two symbols to the left (or to the
right) of the control string.

Finally, it is important to observe that each dendritic
segment is defined by a pair of matched arcs, each of
them defined in terms of a branch point and a lateral
branch point, which establish the beginning of the
dendritic segment, and a termination or a dendritic
sub-tree, which identifies its respective ending. An ex-
ample of such a pair of matched arcs is indicated in
Fig. 4.

2.2.3. The dendrogram
The dendrogram is obtained from the parsing tree in

a straightforward manner. Recall that the dendrogram
describes the dendritic segments between the successive
branch points and terminations. It is also important
that the parsing procedure explained previously gener-
ates a parsing tree that respects the smaller-to-larger
branches in a dendritic structure (see Fig. 6). Further-
more, the branch points and the terminations can be
retrieved in an ordered manner from the parsing tree,
once each node of a symbol ‘E ’ is the father of either a
node ‘b ’ (i.e. a branch point) or of a node ‘e ’. There-
fore, the dendrogram can be obtained by traversing the
parsing tree, starting from the initial parent node, and
measuring the desired feature (e.g. the arc length dis-
tance) between the current node and its derivations (i.e.
the length of each dendritic segment). It is equally
important to note that each branch is composed of a
pair of matched arcs (see Fig. 4). Hence, the length of
each branch is defined as the mean between the arc
lengths of one pair of matched segments. In other
words, let ul(t) and ur(t) be the pair of matched seg-
ments, properly reparameterized, where ul and ur de-
note the left and the right segment, respectively. Then,
the length of the horizontal line segment of the dendro-
gram corresponding to that dendritic segment is pro-
portional to the mean of the arc lengths of ul(t) and
ur(t).

In order to understand this process, refer to Figs. 6
and 7, which present, respectively, the parsing tree
automatically generated by the parsing algorithm and
the corresponding dendrogram of the dendrite in Fig. 4.
The first dendritic segment corresponds to that begin-
ning in the first and the last points of the dendrite
(points e0 and ef of Fig. 4) and finishing at the lateral



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131130

branch points associated to the branch point b4 (see
Fig. 4). Next, a horizontal straight line is drawn by the
algorithm with length proportional to the length of this
first segment, as shown in Fig. 7. Two new branches
appear at this first branch point, and the dendrogram is
ramified. The branch to the right of the parsing tree
finishes at the branch point b2, defining a new pair of
matched segments, and the algorithm draws a new
horizontal straight line with length proportional to the
length of this segment. The algorithm continues recur-
sively until all branches have been analyzed. The aver-
age thickness may be easily calculated as a mean of the
distances between each pair of matched points, i.e. as
the average of the distances between ul(t) and ur(t) for
each point along the pair of matched contour segments.

2.2.4. Obtaining the skeleton
As has been explained, each dendritic segment is

composed of a pair of matched contour segments.
Therefore, the skeleton of each dendritic segment may
be defined by the curve whose points are equidistant to
a pair of corresponding points on the pair of matched
contour segments. In other words, let ul(t) and ur(t) be
a pair of matched contour segments, properly re-
parameterized, of a given dendritic segment (see Section
2.2.3). Therefore the skeleton j(t) of that dendritic
segment is defined as:

j(t)=
ul(t)+ur(t)

2
.

The skeleton of the dendrite indicated in Fig. 4 can be
seen in Fig. 8.

3. Experimental results

As has been commented, the dendrogram of the
dendrite of Fig. 3 is presented in Fig. 7. This dendro-
gram actually represents three geometrical features for
each dendritic segment: the dendritic length, repre-
sented in the dendrogram by the length of each hori-
zontal line segment; the average thickness of the
dendritic segment, represented by the thickness of each
horizontal line segment of the dendrogram; and the
bending energy of each dendritic segment, represented
by the gray-level of each horizontal line segment of the
dendrogram, darker gray-levels representing higher val-
ues of the bending energy. Furthermore, in order to
make the bending energy to represent the overall shape
complexity of each dendritic segment, the curvature
around each segmentation point (terminations and
branch points) was not considered in the bending en-
ergy summation (Eq. (10)), since those points present
very high curvature values, which could mask the over-
all shape complexity. A neighborhood of three points
around each segmentation point has been used in this
process.

Fig. 7. Dendrogram of the dendrite indicated in Fig. 3. In this
dendrogram, the length of each dendritic segment is coded by the
length of the respective horizontal line of the dendrogram; the
average thickness by the thickness of the dendrogram horizontal
lines; and the bending energy (a measure of segment complexity) by
the gray-level, higher values of energy being coded by darker gray-
levels.

Fig. 8. Skeleton of the dendrite of Fig. 4 generated automatically
from its respective parsing tree.



R.M. Cesar, Jr., L. da Fontoura Costa / Journal of Neuroscience Methods 93 (1999) 121–131 131

4. Discussion and conclusions

This work has presented a new approach for shape
analysis of neural cells based on the semi-automated
generation of dendrograms. The proposed framework,
which relies on the multiscale curvature-based segmen-
tation of the neural contour, followed by syntactic
analysis of the partitioned shape, has shown to be
robust and to greatly improve the dendrogram genera-
tion process. The proposed method allows the measur-
ing of different geometrical features from the dendritic
segments that compose dendritic arborization. The geo-
metrical features that can be measured include length,
average thickness, bending energy and average curva-
ture, to name but a few. As an additional virtue of the
proposed framework, the skeleton of the dendrite can
be obtained in a straightforward manner as a by-
product of the parsing procedure employed in the shape
analysis.

Further refinements on the method will include the
introduction of more intelligent mechanisms to help the
operator in procedure 4, as well as automatically check-
ing for valid strings generated by the segmentation
algorithm. The extension to 3D structures and applica-
tions to other biological (2D) branching-like shapes are
also being considered.

Acknowledgements

Luciano da F. Costa is grateful to FAPESP (94/3536-
6, 94/4691-5 and 97/14678-4) and CNPq (301422/92-3)
for financial help. Roberto M. Cesar Jr. is grateful to
FAPESP (97/04186-7 and 98/07722-0) and CNPq
(300722/98-2) for the financial support.

References

Ballard DH, Brown CM. Computer Vision. Englewood Cliffs, NJ:
Prentice-Hall, 1982.

Bennett JR, MacDonald JS. On the measurement of curvature in a
quantized environment. IEEE Trans Comput 1975;C-24(8):803–
20.

Brigham EO. The Fast Fourier Transform. Englewood-Cliffs, NJ:
Prentice-Hall, 1974.

Capowski JJ, Sedivec MJ. Accurate computer reconstruction and
graphics display of complex neurons utilizing state-of-the-art in-
teractive techniques. Comput Biomed Res 1981;14:518–32.

Castleman KR. Digital Image Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

Cesar RM Jr, Costa L da F. Application and assessment of multiscale
bending energy for morphometric characterization of neural cells.
Rev Sci Instr 1997a;68(5):2177–86.

Cesar Jr RM, Costa L da F. Semi-automated dendrogram generation
for neural shape analysis. In: Figueirado LH, Neto ML, editors.
Proc. Brazilian Symposium of Computer Graphics and Image
Processing (SIBGRAPI-97, Campos do Jordão, SP, Out 1997;
http://www.visgraf.impa.br/sibgrapi97/anais/ART10/), IEEE
Computer Society Press, Los Alamitos, California, 1997, pp.
147–54.

Costa L da F, Cesar Jr RM, Coelho RC, Tanaka JS. Perspective on
the analysis and synthesis of morphologically realistic neural
networks. In: Poznanski R, editor. Modeling in the Neuro-
sciences: From Ionic Channels to Neural Networks. Amsterdam:
Gordon and Breach Science Publishers, 1998 (in press).

Fu KS. Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1982.

Fukuda Y, Watanabe C-F, Ito H. Physiologically identified Y-, X-,
and W-cells in cat retina. J Neurophysiol 1984;52(6):999–1013.

Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing
pattern in model neocortical neurons. Nature 1996;382:363–6.

Masseroli M, Bollea A, Forloni G. Quantitative morphology and
shape classification of neurons by computerized image analysis.
Comput Methods Prog Biomed 1993;41:89–99.

Matesz C, Birinyi A, Kothalawala DS, Székely G. Investigation of
the dendritic geometry of brain stem motoneurons with different
functions using multivariant statistical techniques in frog. Neuro-
science 1995;65(4):1129–44.

Murray JD. Use and abuse of fractal theory in neuroscience. J Comp
Neurol 1995;361:369–71.

Panico J, Sterling P. Retinal neurons and vessels are not fractal but
space-filling. J Comp Neurol 1995;361:479–90.

Poznanski RR. Modeling the electronic structure of starburst
amacrine cells in the rabbit retina: functional interpretation of
dendritic morphology. Bull Math Biol 1992;54:905–28.

Ramon-Moliner E. An attempt at classifying nerve cells on the basis
of their dendritic patterns. J Comp Neurol 1962;119:211–67.

Saito H-A. Morphology of physiologically identified X-, Y-, and
W-type retinal ganglion cells of the cat. J Comp Neurol
1983;221:279–88.

de Schutter E, Bower JM. An active membrane model of the cerebel-
lar purkinje cell. I. Simulation of current clamps in slice. J
Neurophysiol 1994;71:375–400.

Sholl DA. Dendritic organization in the neurons of the visual and
motor cortices of the cat. J Anat 1953;87:387–407.

Smith TG Jr., Marks WB, Lange GD, Sheriff WH, Neale EA. A
fractal analysis of cell images. J Neurosci Methods 1989;27:173–
80.

Smith TG Jr., Lange GD, Marks WB. Fractal methods and results in
cellular morphology-dimensions, lacunarity and multifractals. J
Neurosci Methods 1996;69:123–36.

Turner DA, Li X-G, Pyapali GK, Ylinen A, Buzsaki G. Morphomet-
ric and electrical properties of reconstructed hippocampal ca3
neurons recorded in vivo. J Comp Neurol 1995;356:556–80.

Velte TJ, Miller RF. Dendritic integration in ganglion cells of the
mudpuppy retina. Visual Neurosci 1995;12:165–75.

Ventimiglia R, Jones BE, Møller A. A quantitative method for
morphometric analysis in neuronal cell culture: unbiased estima-
tion of neuron area and number of branch points. J Neurosci
Methods 1995;57:63–6.

Wann DF, Woolsey TA, Dierker ML, Cowan WM. An on-line
digital-computer system for the semiautomatic analysis of Golgi-
impregnated neurons. IEEE Trans Biomed Eng 1973;BME-
20(4):233–47.

Young IT, Walker JE, Bowie JE. An analysis technique for biological
shape. I. Inform Control 1974;25:357–70.

.


