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Introduction

This work shows how to estimate the support of the distribution of some data when observations in the data have uncertainties. To model uncertainties, we consider each observation of the training
set to be a random vector distributed according to a distribution with first and second moments in a local vicinity. To estimate the support, we used the support vector data description method.
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Definition (USVDD Dual Form)
- Interpretation : The probability that the random vector x; Given the training dataset {x; ~ (x;,%;) ey, k; € [0,1], i =1,2...,n, and C' > 0, the dual form of USVDD is
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by (Markov’s inequality)
ca; =0,0; >0 = & =0. Then x; ~ (X;,%;), ¢ € {i|a; = 0} lies inside the hypersphere no matters the value for
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constraint, 1.e., ca; >0,8,>0 = & =0and 0 < ayk; < C. From this and (2)
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data Points {x'|||x" — c||? = (||&; — c||? + tr(%;))/x;}, will be in the hypersphere.
Definition (USVDD)
Given the training dataset {x; ~ (x;,>;)}I1, the probabilistic lev- Figures
els k; € [0,1], ¢ = 1,2...,n, and C' > 0, the support vector data
description for uncertainty data is given by
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values k1 = 0.95, kappas = 0.99, ki = 0.93 and the other one has values

k1 = 0.1, kappas =1, kg = 0.2

Conclusion

a) Probabilistic values (k;) values associated x; ~ (X;,Y;) inside the hypersphere are not important. b) By controlling some specific probabilistic value, i.e., k;, we will construct a hypersphere that
encloses or not the associated point, i.e..x;. ¢) USVDD equals to SVDD solutions if x; = 1, tr(3;) =0, Vi =1,2...,n, i.e., it is not uncertainty in the data.



