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Introduction

This work shows how to estimate the support of the distribution of some data when observations in the data have uncertainties. To model uncertainties, we consider each observation of the training
set to be a random vector distributed according to a distribution with first and second moments in a local vicinity. To estimate the support, we used the support vector data description method.

Chance Constrain Approach

• Let {xi ∼ (x̂i,Σi)}ni=1 be the training set, the probabilistic levels
κi ∈ [0, 1], i = 1, 2 . . . , n, and C > 0, USVDD seeks to minimize
the radius of the hypersphere that encloses most of the uncertainty
points. The chance constraint formulation is

•
Problem

min
c∈H,R∈R

R2 + C
n∑
i=1

ξi

subject to P
xi∼(x̄i,Σi)

(‖xi − c‖2 ≤ R2 + ξi) ≥ 1− κi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

• Interpretation : The probability that the random vector xi
takes its values outside the sphere of radius R and center c is
less or equal than κi. Example, if κi = κ, i = 1, 2, . . . , n are small
values, then R will increase, i.e., the probability that xi will be
outside the sphere will be small.

• Some Lemmas
Lema

Ex∼(x̂,Σ)[‖x− c‖2] = tr(Σ) + ‖x̂− c‖2, x ∈ Rd

Lema
The probabilistic constraint P

x∼(x̄,Σ)
(‖x− c‖2 ≥ R2 + ξ), is bounded

by (Markov’s inequality)
tr(Σ) + ‖x̄− c‖2

R2 + ξ

Forcing this bound to be less or equal than a given value κi for each
constraint, i.e.,

tr(Σi) + ‖x̂i − c‖2

R2 + ξi
≤ κi, i = 1, 2, . . . , n, (1)

permits us to control the size of the hypersphere that encloses the
data

Definition (USVDD)
Given the training dataset {xi ∼ (x̄i,Σi)}ni=1, the probabilistic lev-
els κi ∈ [0, 1], i = 1, 2 . . . , n, and C > 0, the support vector data
description for uncertainty data is given by

Problem

min
c∈Rd,R∈R,ξ∈Rn

R2 + C
n∑
i=1

ξi

subject to ‖x̂i − c‖2 ≤ (R2 + ξi)κi − tr(Σi), i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n.
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Lagrangian and KKT’s Conditions

Lagrangian

L(R, c, ξ,α,β) = R2 + C
n∑
i=1

ξi −
n∑
i=1

αi{(R2 + ξi)κi − ‖x̂i − c‖2 − tr(Σi)} −
n∑
i=1

βξi

Karush–Kuhn–Tucker (KKT) conditions

∂RL = 0 : ∑n
i=1αiκi

OcL = 0 : −2 ∑n
i=1 αix̂i + 2 ∑n

i=1αic
OξL = 0 : C1n − diag(ακ>)− β

=
1
0

0n

αi{(R2 + ξi)κi − ‖x̂i − c‖2 − tr(Σi)}
βiξi

= 0
0

 1, 2, . . . , n

Definition (USVDD Dual Form)

Given the training dataset {xi ∼ (x̄i,Σi)}ni=1, κi ∈ [0, 1], i = 1, 2 . . . , n, and C > 0, the dual form of USVDD is
Problem

max
α∈Rn

n∑
i=1

αi〈x̂i, x̂i〉 −
∑n
i,j=1 αiαj〈x̂i, x̂j〉∑n

i=1αi
+ n∑
i=1

αitr(Σi)

subject to 0 ≤ n∑
i=1

αiκi = 1, αiκi ≤ C, i = 1, . . . , n

c =
∑
iαix̂i∑
i∈αi

, i ∈ {i|0 < αiκi ≤ C}, From KKT’s : (2)

Analysis

• αi = 0, βi > 0 =⇒ ξi = 0. Then xi ∼ (x̂i,Σi), i ∈ {i|αi = 0} lies inside the hypersphere no matters the value for
κi, Points {x′|‖x′ − c‖2 = (‖x̂i − c‖2 + tr(Σi))/κi}, will be inside the hypersphere.

• αi > 0, βi = 0 =⇒ ξi > 0. Then xi ∼ (x̂i,Σi), i ∈ {i|αiκi = C} lies outside the hypersphere with probability κi.
Points {x′|‖x′ − c‖2 = (‖x̂i − c‖2 + tr(Σi))/κi}, will be outside the hypersphere.

• αi > 0, βi > 0 =⇒ ξi = 0 and 0 < αiκi < C. From this and (2)

R2 = ‖x̂i − c‖2 + tr(Σi)
κi

, i ∈ {i|0 < αiκi < C}. (3)

Points {x′|‖x′ − c‖2 = (‖x̂i − c‖2 + tr(Σi))/κi}, will be in the hypersphere.
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USVDD vs SVDD. Red line: USVDD solution, Dashed lines: several
SVDD solutions for C = {2−3, . . . 215}

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 1
 2

 3

 4

 5
 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

X(1)

X
(2

)

 1
 2

 3

 4

 5
 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Two different USVDD solutions for the same dataset and same C but
with different probabilistic levels between both problems, The first one has
values κ1 = 0.95, kappa3 = 0.99, κ16 = 0.93 and the other one has values

κ1 = 0.1, kappa3 = 1, κ16 = 0.2

Conclusion

a) Probabilistic values (κi) values associated xi ∼ (x̂i,Σi) inside the hypersphere are not important. b) By controlling some specific probabilistic value, i.e., κi, we will construct a hypersphere that
encloses or not the associated point, i.e.,xi. c) USVDD equals to SVDD solutions if κi = 1, tr(Σi) = 0, ∀i = 1, 2 . . . , n, i.e., it is not uncertainty in the data.


